All posts by Admin

Shadow Science and Technology Secretary discusses AI and innovation during Cambridge visit

source: www.cam.ac.uk

Peter Kyle MP, the Shadow Secretary of State for Science, Innovation and Technology, met academics from the University of Cambridge and leaders from the Cambridge community for a day focused on AI policy and innovation.

The visit took place at Cambridge Innovation Capital and was hosted by Innovate Cambridge – an initiative which is bringing together partners across the city region to deliver an inclusive future for Cambridge and its science and technology cluster. The Shadow Minister met with experts on AI from the University and from industry, discussing both the challenges it presents, as well as the enormous potential for AI to serve science, people, and society.

At the opening roundtable, academics including Professor Dame Diane Coyle (Director of the Bennett Institute of Public Policy), Professor Neil Lawrence (DeepMind Professor of Machine Learning), and Professor John Aston (Professor of Statistics in Public Life), provided expert analysis on AI policy challenges as well as the role AI can play in public service reform. The group discussed how governance systems need to evolve for the AI era, and how an increasingly complex information infrastructure can be managed. In addition, they considered the opportunity that AI presents for improving public services and breaking down siloed decision-making within government.

Mr Kyle took part in a series of ‘flash talks’, focused on areas where research in AI is delivering benefits to society. These included work by Dr Ronita Bardhan, from the University’s Department of Architecture, on a new deep-learning model which makes it far easier and cheaper to identify ‘hard-to-decarbonise’ houses and develop strategies to improve their green credentials. Dr Anna Moore presented her work in the Department of Psychiatry, using AI systems to speed up the diagnosis of mental health conditions in children.

In the afternoon, Mr Kyle met with leaders representing civic institutions, academia and business organisations from across the city, including Councillor Mike Davey, Leader of Cambridge City Council, and Andrew Williamson, Managing Partner at Cambridge Innovation Capital. They spoke about their shared vision and strategy for the region to ensure Cambridge remains a globally leading innovation centre, and a collective desire to deliver benefits both locally and across the UK.

The day concluded with a spin-out and business roundtable at which participants discussed the need for government and the private sector to be active in ensuring AI benefits all parts of the UK, and people are re-skilled as jobs change. Mr Kyle was also interested to explore how the UK can become a more attractive place to scale companies. Key considerations included the need to improve access to talent, capital and infrastructure, as well tackling the regulatory barriers which can make the UK less competitive.



The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Religious people coped better with Covid-19 pandemic, research suggests

People in church praying with covid-19 restrictions

source: www.cam.ac.uk

Two Cambridge-led studies suggest that the psychological distress caused by lockdowns (UK) and experience of infection (US) was reduced among those of faith compared to non-religious people.  

People of religious faith may have experienced lower levels of unhappiness and stress than secular people during the UK’s Covid-19 lockdowns in 2020 and 2021, according to a new University of Cambridge study released as a working paper.

The findings follow recently published Cambridge-led research suggesting that worsening mental health after experiencing Covid infection – either personally or in those close to you – was also somewhat ameliorated by religious belief. This study looked at the US population during early 2021.

University of Cambridge economists argue that – taken together – these studies show that religion may act as a bulwark against increased distress and reduced wellbeing during times of crisis, such as a global public health emergency.

“Selection biases make the wellbeing effects of religion difficult to study,” said Prof Shaun Larcom from Cambridge’s Department of Land Economy, and co-author of the latest study. “People may become religious due to family backgrounds, innate traits, or to cope with new or existing struggles.”

“However, the Covid-19 pandemic was an extraordinary event affecting everyone at around the same time, so we could gauge the impact of a negative shock to wellbeing right across society. This provided a unique opportunity to measure whether religion was important for how some people deal with a crisis.”

Larcom and his Cambridge colleagues Prof Sriya Iyer and Dr Po-Wen She analysed survey data collected from 3,884 people in the UK during the first two national lockdowns, and compared it to three waves of data prior to the pandemic.

They found that while lockdowns were associated with a universal uptick in unhappiness, the average increase in feeling miserable was 29% lower for people who described themselves as belonging to a religion.*

The researchers also analysed the data by “religiosity”: the extent of an individual’s commitment to religious beliefs, and how central it is to their life. Those for whom religion makes “some or a great difference” in their lives experienced around half the increase in unhappiness seen in those for whom religion makes little or no difference.**

“The study suggests that it is not just being religious, but the intensity of religiosity that is important when coping with a crisis,” said Larcom.

Those self-identifying as religious in the UK are more likely to have certain characteristics, such as being older and female. The research team “controlled” for these statistically to try and isolate the effects caused by faith alone, and still found that the probability of religious people having an increase in depression was around 20% lower than non-religious people.

There was little overall difference between Christians, Muslims and Hindus – followers of the three biggest religions in the UK. However, the team did find that wellbeing among some religious groups appeared to suffer more than others when places of worship were closed during the first lockdown.

“The denial of weekly communal attendance appears to have been particularly affecting for Catholics and Muslims,” said Larcom.

For the earlier study, authored by Prof Sriya Iyer, along with colleagues Kishen Shastry, Girish Bahal and Anand Shrivastava from Australia and India, researchers used online surveys to investigate Covid-19 infections among respondents or their immediate family and friends, as well as religious beliefs, and mental health. 

The study was conducted during February and March 2021, and involved 5,178 people right across the United States, with findings published in the journal European Economic Review in November 2023.

Researchers found that almost half those who reported a Covid-19 infection either in themselves or their immediate social network experienced an associated reduction in wellbeing.

Where mental health declined, it was around 60% worse on average for the non-religious compared to people of faith with typical levels of “religiosity”.***

Interestingly, the positive effects of religion were not found in areas with strictest lockdowns, suggesting access to places of worship might be even more important in a US context. The study also found significant uptake of online religious services, and a 40% lower association between Covid-19 and mental health for those who used them.****

“Religious beliefs may be used by some as psychological resources that can shore up self-esteem and add coping skills, combined with practices that provide social support,” said Prof Iyer, from Cambridge’s Faculty of Economics.

“The pandemic presented an opportunity to glean further evidence of this in both the United Kingdom and the United States, two nations characterised by enormous religious diversity.” 

Added Larcom: “These studies show a relationship between religion and lower levels of distress during a global crisis. It may be that religious faith builds resilience, and helps people cope with adversity by providing hope, consolation and meaning in tumultuous times.”  


Notes

* The increase in the mean measure for unhappiness was 6.1 percent for people who do not identify with a religion during the lockdown, compared to an increase of 4.3 percent for those who do belong to a religion – a difference of 29%.

**For those that religion makes little or no difference, the increase was 6.3 percent.  For those for whom religion makes some or a great difference, the increase was around half that, at 3 percent and 3.5 percent respectively.

*** This was after controlling for various demographic and environmental traits, including age, race, income, and average mental health rates prior to the pandemic.

**** The interpretation is from Column 1 of Table 5: Determinants of mental health, online access to religion. Where the coefficients of Covid {Not accessed online service} is 2.265 and Covid {Accessed online service} is 1.344. Hence the difference is 2.265-1.344 = 0.921 which is 40% of 2.265.



The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Scientists identify how fasting may protect against inflammation

Intermittent fasting conceptual image, showing a plate of food to represent a clock.

source: www.cam.ac.uk

Cambridge scientists may have discovered a new way in which fasting helps reduce inflammation – a potentially damaging side-effect of the body’s immune system that underlies a number of chronic diseases.

Our work adds to a growing amount of scientific literature that points to the health benefits of calorie restrictionClare Bryant

In research published in Cell Reports, the team describes how fasting raises levels of a chemical in the blood known as arachidonic acid, which inhibits inflammation. The researchers say it may also help explain some of the beneficial effects of drugs such as aspirin.

Scientists have known for some time that our diet – particular a high-calorie Western diet – can increase our risk of diseases including obesity, type 2 diabetes and heart disease, which are linked to chronic inflammation in the body.

Inflammation is our body’s natural response to injury or infection, but this process can be triggered by other mechanisms, including by the so-called ‘inflammasome’, which acts like an alarm within our body’s cells, triggering inflammation to help protect our body when it senses damage. But the inflammasome can trigger inflammation in unintentional ways – one of its functions is to destroy unwanted cells, which can result in the release of the cell’s contents into the body, where they trigger inflammation.

Professor Clare Bryant from the Department of Medicine at the University of Cambridge said: “We’re very interested in trying to understand the causes of chronic inflammation in the context of many human diseases, and in particular the role of the inflammasome.

“What’s become apparent over recent years is that one inflammasome in particular – the NLRP3 inflammasome – is very important in a number of major diseases such as obesity and atherosclerosis, but also in diseases like Alzheimer’s and Parkinson’s disease, many of the diseases of older age people, particularly in the Western world.”

Fasting can help reduce inflammation, but the reason why has not been clear. To help answer this question, a team led by Professor Bryant and colleagues at the University of Cambridge and National Institute for Health in the USA studied blood samples from a group of 21 volunteers, who ate a 500kcal meal then fasted for 24 hours before consuming a second 500kcal meal. 

The team found that restricting calorie intake increased levels of a lipid known as arachidonic acid. Lipids are molecules that play important roles in our bodies, such as storing energy and transmitting information between cells. As soon as individuals ate a meal again, levels of arachidonic acid dropped.

When the researchers studied arachidonic acid’s effect in immune cells cultured in the lab, they found that it turns down the activity of the NLRP3 inflammasome. This surprised the team as arachidonic acid was previously thought to be linked with increased levels of inflammation, not decreased.

Professor Bryant, a Fellow of Queens’ College, Cambridge, added: “This provides a potential explanation for how changing our diet – in particular by fasting – protects us from inflammation, especially the damaging form that underpins many diseases related to a Western high calorie diet.

“It’s too early to say whether fasting protects against diseases like Alzheimer’s and Parkinson’s disease as the effects of arachidonic acid are only short-lived, but our work adds to a growing amount of scientific literature that points to the health benefits of calorie restriction. It suggests that regular fasting over a long period could help reduce the chronic inflammation we associate with these conditions. It’s certainly an attractive idea.”

The findings also hint at one mechanism whereby a high calorie diet might increase the risk of these diseases. Studies have shown that some patients that have a high fat diet have increased levels of inflammasome activity.

“There could be a yin and yang effect going on here, whereby too much of the wrong thing is increasing your inflammasome activity and too little is decreasing it,” said Professor Bryant. “Arachidonic acid could be one way in which this is happening.”

The researchers say the discovery may also offer clues to an unexpected way in which so-called non-steroidal anti-inflammatory drugs such as aspirin work. Normally, arachidonic acid is rapidly broken down in the body, but aspirin stops this process, which can lead to an increase in levels of arachidonic acid, which in turn reduce inflammasome activity and hence inflammation.

Professor Bryant said: “It’s important to stress that aspirin should not be taken to reduce risk of long terms diseases without medical guidance as it can have side-effects such as stomach bleeds if taken over a long period.”

The research was funded by Wellcome, the Medical Research Council and the US National Heart, Lung, and Blood Institute Division of Intramural Research.

Reference
Pereira, M & Liang, J et al. Arachidonic acid inhibition of the NLRP3 inflammasome is a mechanism to explain the anti-inflammatory effects of fasting. Cell Reports; 23 Jan 2024; DOI: 10.1016/j.celrep.2024.113700



The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Robot trained to read braille at twice the speed of humans

Can robots read braille?

https://www.youtube-nocookie.com/embed/xqtA2Z668Ic?wmode=opaque&controls=1&rel=0&autohide=0&enablejsapi=1&origin=https%3A%2F%2Fwww.cam.ac.uk

source: www.cam.ac.uk

Researchers have developed a robotic sensor that incorporates artificial intelligence techniques to read braille at speeds roughly double that of most human readers.

The research team, from the University of Cambridge, used machine learning algorithms to teach a robotic sensor to quickly slide over lines of braille text. The robot was able to read the braille at 315 words per minute at close to 90% accuracy.

Although the robot braille reader was not developed as an assistive technology, the researchers say the high sensitivity required to read braille makes it an ideal test in the development of robot hands or prosthetics with comparable sensitivity to human fingertips. The results are reported in the journal IEEE Robotics and Automation Letters.

Human fingertips are remarkably sensitive and help us gather information about the world around us. Our fingertips can detect tiny changes in the texture of a material or help us know how much force to use when grasping an object: for example, picking up an egg without breaking it or a bowling ball without dropping it.

Reproducing that level of sensitivity in a robotic hand, in an energy-efficient way, is a big engineering challenge. In Professor Fumiya Iida’s lab in Cambridge’s Department of Engineering, researchers are developing solutions to this and other skills that humans find easy, but robots find difficult.

“The softness of human fingertips is one of the reasons we’re able to grip things with the right amount of pressure,” said Parth Potdar from Cambridge’s Department of Engineering and an undergraduate at Pembroke College, the paper’s first author. “For robotics, softness is a useful characteristic, but you also need lots of sensor information, and it’s tricky to have both at once, especially when dealing with flexible or deformable surfaces.”

Braille is an ideal test for a robot ‘fingertip’ as reading it requires high sensitivity, since the dots in each representative letter pattern are so close together. The researchers used an off-the-shelf sensor to develop a robotic braille reader that more accurately replicates human reading behaviour.

“There are existing robotic braille readers, but they only read one letter at a time, which is not how humans read,” said co-author David Hardman, also from the Department of Engineering. “Existing robotic braille readers work in a static way: they touch one letter pattern, read it, pull up from the surface, move over, lower onto the next letter pattern, and so on. We want something that’s more realistic and far more efficient.”

The robotic sensor the researchers used has a camera in its ‘fingertip’, and reads by using a combination of the information from the camera and the sensors. “This is a hard problem for roboticists as there’s a lot of image processing that needs to be done to remove motion blur, which is time and energy-consuming,” said Potdar.

The team developed machine learning algorithms so the robotic reader would be able to ‘deblur’ the images before the sensor attempted to recognise the letters. They trained the algorithm on a set of sharp images of braille with fake blur applied. After the algorithm had learned to deblur the letters, they used a computer vision model to detect and classify each character.

Once the algorithms were incorporated, the researchers tested their reader by sliding it quickly along rows of braille characters. The robotic braille reader could read at 315 words per minute at 87% accuracy, which is twice as fast and about as accurate as a human Braille reader.

“Considering that we used fake blur the train the algorithm, it was surprising how accurate it was at reading braille,” said Hardman. “We found a nice trade-off between speed and accuracy, which is also the case with human readers.”

“Braille reading speed is a great way to measure the dynamic performance of tactile sensing systems, so our findings could be applicable beyond braille, for applications like detecting surface textures or slippage in robotic manipulation,” said Potdar.

In future, the researchers are hoping to scale the technology to the size of a humanoid hand or skin. The research was supported in part by the Samsung Global Research Outreach Program.

Reference:
Parth Potdar et al. ‘High-Speed Tactile Braille Reading via Biomimetic Sliding Interactions.’ IEEE Robotics and Automation Letters (2024). DOI: 10.1109/LRA.2024.3356978



The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Cambridge student Giulio Regeni remembered

Elisabeth Kendall, Mistress of Girton College, unveils the plaque honouring Giulio Regeni.

source: www.cam.ac.uk

Giulio Regeni was remembered during an event at Girton College, where a plaque was unveiled in his honour.

Giulio was a passionate researcher with a deep sense of justice.Elisabeth Kendall, Mistress of Girton College

The plaque offers a space in which colleagues and friends of the Cambridge PhD student, who studied at Girton, can pay their respects.

Giulio, an experienced researcher, was conducting fieldwork when he was abducted from the streets of Cairo on 25 January 2016, and later found murdered on 3 February 2016. The plaque unveiling marks the 8-year anniversary of his death. No one has yet been convicted of the crime.

Court officials in Rome have charged four Egyptian security officials with Giulio’s abduction, torture and murder, and a trial is due to begin in February. The College and University continue to stand in support of Giulio’s family and friends, and with Amnesty International, in their tireless efforts to uncover the truth of what happened to Giulio.

Elisabeth Kendall, Mistress of Girton College, said: “The loss of Giulio continues to cast a dark shadow over all those who knew him. Giulio was a passionate researcher with a deep sense of justice who had his whole life ahead of him before it was cruelly ended in Cairo. Justice has yet to be done. We will never stop remembering Giulio.”

Every year the College marks the anniversary by flying the College flag to half-mast in memory on 25 January and then on 3 February.



The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

New Pro-Vice-Chancellor for Innovation appointed

Dr Diarmuid O’Brien

source: www.cam.ac.uk

Dr Diarmuid O’Brien has been appointed as the University of Cambridge’s new Pro-Vice-Chancellor for Innovation. He is currently Chief Executive of Cambridge Enterprise, the University’s commercialisation arm which supports academics, researchers, staff and students in achieving knowledge transfer and research impact.

Dr O’Brien will take over from current Senior Pro-Vice-Chancellor Andy Neely, whose term of office finishes at the end of February. Dr O’Brien, who has a PhD in Physics from the University of Sheffield and a degree in Materials Science from Trinity College Dublin, joined Cambridge Enterprise from Trinity College Dublin, where he was Chief Innovation Officer. At Cambridge Enterprise he has led a new strategy which has supported activities such as the establishment of Innovate Cambridge, the formation of Founders at the University of Cambridge, the integration and renewal of ideaSpace and the commencement of the Technology Investment Fund to support the development of University intellectual property.

“The University and the broader Cambridge ecosystem are recognised as being globally leading for innovation, enterprise and entrepreneurship,” said Dr O’Brien. “I have seen this first-hand from my role as Chief Executive of Cambridge Enterprise and in helping to establish Innovate Cambridge. I look forward to my new role as Pro-Vice-Chancellor for Innovation and continuing to enhance the ambition for how the University of Cambridge can enable impact from our research and through our innovation partnerships.”

He replaces Professor Andy Neely, who has served as Pro-Vice-Chancellor for Enterprise and Business Relations since March 2017, and received an OBE for services to University/Industry Collaboration in 2020. Professor Neely’s achievements as Pro-Vice-Chancellor included leading the University’s Recovery Programme helping the University respond to the coronavirus pandemic, overseeing the establishment of the Change and Programme Management Board, as well as building far stronger links with the local and regional innovation community through important initiatives such as Innovate Cambridge.

Professor Neely said: “I’m honoured to have served in this role for seven years and delighted that Diarmuid has been appointed as my successor. The University of Cambridge’s impact on the world is significantly enhanced by our engagement with business and our world-leading innovation ecosystem and I have no doubt that this will go from strength to strength under Diarmuid’s leadership”.

The University of Cambridge Vice-Chancellor Professor Deborah Prentice welcomed Dr O’Brien to the role and thanked Professor Neely for his service.

She said: “I warmly congratulate Diarmuid on being appointed to this important role. With his wealth of experience in driving innovation, most recently at Cambridge Enterprise, he will help ensure no momentum is lost in the handover from the previous Pro-Vice-Chancellor, Andy Neely.
“I would like to put on record my sincerest thanks to Andy for his service to Cambridge, both as an academic leader and as Pro-Vice-Chancellor for Enterprise and Business Relations. I know I speak on behalf of all University colleagues when I say how grateful we are for what he has achieved in that role over the past seven years.”

The Pro-Vice-Chancellor for Innovation is broadly the same role as the current Pro-Vice-Chancellor for Enterprise and Business Relations role, but with an enhanced focus on industry, enterprise and innovation.

Dr O’Brien takes up the role in April, and will remain in his current capacity at Cambridge Enterprise for one day a week to provide continuity and connection with Cambridge Enterprise.

There are five Pro-Vice-Chancellors at the University of Cambridge. Their role is to work in partnership with senior administrators to help drive strategy and policy development. The Pro-Vice-Chancellors also support the Vice-Chancellor in providing academic leadership to the University.
 



The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Is a green career for you?

Lent Term: Cambridge Zero offers a careers festival, a climate innovation challenge, free climate training and paid summer positions.

By Ellie Austin

2023 Future Leaders Programme in action

source: www.cam.ac.uk

Cambridge Zero kicks off Lent Term 2024 with a packed calendar of competitions, training, industry networking, career panels, and application openings for professional summer placement opportunities.

Climate Challenge 2024: Nature

Are you interested in climate change and want to give entrepreneurship a try? Want to develop your ideas and be in with a chance of winning a £1500 cash prize

Cambridge Zero’s Climate Challenge is an annual entrepreneurship training programme and competition for climate-interested postgrads and postdocs at the University of Cambridge. This year’s theme is nature

Free weekly training sessions will teach early career researchers about effective storytelling, voluntary carbon markets, intellectual property rights, pitching their ideas, and more. 

To win the competition, participants form small teams of 2-3 (which can be formed in the initial sessions of the programme, facilitated by the pizza and pub socials!) to propose scalable solutions to climate change

Shortlisted teams will pitch their ideas to our expert panel of judges at the final, where the winning team will receive a £1500 cash prize and the two runner-up teams will receive a £750 cash prize. 

Last year’s competition, themed “just decarbonisation”, winners proposed an “elegant” solution to use algae to tackle methane emissions in the Global South, which had the additional benefits of supporting local communities while mitigating a lack of alternative landfill solutions. 

“The climate challenge was one of the most exciting and well-organised events I got to attend during my four years at Cambridge”Tristan Spreng, 2023 Climate Challenge Winner

Following the launch on January 19th, there’s still time to get involved! The next session is an Ideas Jam on Wednesday 24 January 4:30-6pm, Seminar Room, Old Cavendish East. Come along to chat enterprise ideas, socialise with fellow students, and get inspired! 

The deadline for forming teams and developing a concept is Thursday 15 February 11:59pm.

If you’re interested in taking part, sign-up to the Climate Challenge 2024 mailing list here, and you can find the full Climate Challenge programme and competition details here.

2024 Climate Challenge Launch

2023 Climate Challenge Pub Social

Green Careers Festival

Want to make an impact with your career? Curious to know what options are out there for you after graduation?

The Green Careers Festival, run by the University Careers Service in collaboration with Cambridge Zero over two weeks starting 29 January, brings students and recent graduates together with sustainability and environment-related organisations to discover potential career paths and job roles.

The Festival kicks off with the Green Careers Fair on January 29th. This year’s Fair will feature employers working across the voluntary carbon market, cleantech innovations in power, transport, waste, industry and building sectors, renewable energy design and distribution, alternative protein (insects!) production and more.

The Festival welcomes students and recent graduates from all disciplines to explore the wide variety of career opportunities available in climate and sustainability, regardless of your area of study or academic background.

Across the following two weeks, panel events will hear from industry experts on topics such as “becoming a sustainability consultant without a STEM degree”, “thinking critically about employers in the sustainability sector” and “greening the built environment.”

“We want to inspire Cambridge graduates to be future leaders in a changing world.”Dr Amy Munro-Faure, Cambridge Zero Head of Education and Student Engagement

The Festival will run from 29 January to 9 February 2024. See the full programme of events here, and make sure to save yourself a spot through the event links.

blue, green, and yellow world map

Photo by Andrew Stutesman on Unsplash

Future Leaders Programme 2024

Looking for an opportunity to explore a green career for the summer?

The Cambridge Zero Future Leaders Programme encourages students and recent graduates to try out green careers and contribute to the University’s efforts to tackle climate change.

The programme opens for applications from 29 January until 11 March, and will run for eight weeks over the summer between July and September.

Over the summer each Future Leader is tasked with planning and conducting their own projects and presenting their findings at the end of programme symposium.

Last year’s projects ranged from agricultural research in the Cambridgeshire Fens to communicating the University’s climate research through press releases and website features.

“The most significant personal growth has been my realisation of where I could see myself in the future.”Edison Wan, 2023 Future Leaders Programme

Roles are available for current or recent undergraduates this summer, paid at real living wage. To read more on last year’s programme, see here.

Applications open from the first day of the Green Careers Festival, during the Green Careers Fair. Interested students can speak to us about the programme at our stall, or hear more via our student mailing list.

Image credit: Beth Simpson

Image credit: Neil Mahon

Climate Qualifications

Looking for professional climate and sustainability training to bolster your CV?

The student-run Cambridge Hub, funded by Cambridge Zero, will be running two student programmes:

  • Free carbon literacy training

Cambridge Hub are running a formal training course in the climate crisis, greenhouse emissions and climate action with the Cambridge Carbon Literacy Project.

Upon completion you will receive an internationally recognised qualification to show to employers and peers.

The first session begins 9 February, and you can sign-up to the programme here.

  • Engage for Change

Eager to get involved in climate action but not sure where to start?

Engage for Change is an 8-week training programme on climate action. Students are guided to enact individual sustainability projects across the University, alongside weekly training sessions on topics from sustainability in practice to project management.

Previous projects have included switching from single-use plastic to re-usable Tupperware and minimising food waste in College dining halls.

Keep an eye out for sign-up openings for their Easter cohort, and the progress of their Lent cohort, on their social media and website.

Interested students can keep up to date with these and other opportunities with Cambridge Zero via our student mailing list.

Published 22 January 2024

Images: Ellie Austin, unless otherwise stated.

The text in this work is licensed under a Creative Commons Attribution 4.0 International License

Read more Cambridge climate news


Cambridge Zero is the University of Cambridge’s ambitious climate change initiative, harnessing the power of research to tackle climate change at one of the top global research universities in the world.

Removing largest wine glass serving reduces amount of wine sold in bars and pubs

Red and white wine in glasses

source: www.cam.ac.uk

Taking away the largest serving of wine by the glass – in most cases the 250ml option – led to an average reduction in the amount of wine sold at pubs and bars of just under 8%, new research led by a team at the University of Cambridge has discovered.

When the largest serving size of wine by the glass was unavailable, people shifted towards the smaller options, but didn’t then drink the equivalent amount of wineEleni Mantzari

While only modest, the finding could provide one way of nudging customers to drink less alcohol and have an impact at a population level, say the researchers.

Alcohol consumption is the fifth largest contributor to premature death and disease worldwide. In 2016 it was estimated to have caused approximately 3 million deaths worldwide.

There are many factors that influence how much we drink, from advertising to labelling to availability and cost. Previous research from the Behaviour and Health Research Unit at Cambridge has shown that even glass size can influence how much alcohol is consumed.

In research published today in PLOS Medicine, the Cambridge team carried out a study in 21 licensed premises (mainly pubs) in England to see whether removing their largest serving of wine by the glass for four weeks would have an impact on how much wine is consumed. Wine is the most commonly drunk alcoholic drink in the UK and Europe. Twenty of the premises completed the experiment as designed by the researchers and were included in the final analysis.

After adjusting for factors such as day of the week and total revenue, the researchers found that removing the largest wine glass serving led to an average (mean) decrease of 420ml of wine sold per day per venue – equating to a 7.6% decrease.

There was no evidence that sales of beer and cider increased, suggesting that people did not compensate for their reduced wine consumption by drinking more of these alcoholic drinks. There was also no evidence that it affected total daily revenues, implying that participating licensed premises did not lose money as a result of removing the largest serving size for glasses of wine, perhaps due to the higher profit margins of smaller serving sizes of wine. However, it is important to note that the study was not designed to provide statistically meaningful data on these points.

First author Dr Eleni Mantzari, from the University of Cambridge, said: “It looks like when the largest serving size of wine by the glass was unavailable, people shifted towards the smaller options, but didn’t then drink the equivalent amount of wine.

“People tend to consume a specific number of ‘units’ – in this case glasses – regardless of portion size. So, someone might decide at the outset they’ll limit themselves to a couple of glasses of wine, and with less alcohol in each glass they drink less overall.”

Professor Dame Theresa Marteau, the study’s senior author and an Honorary Fellow at Christ’s College Cambridge, added: “It’s worth remembering that no level of alcohol consumption is considered safe for health, with even light consumption contributing to the development of many cancers. Although the reduction in the amount of wine sold at each premise was relatively small, even a small reduction could make a meaningful contribution to population health.”

Evidence suggests that the public prefer information-based interventions, such as health warning labels, to reductions in serving or package sizes. However, in this study, managers at just four of the 21 premises reported receiving complaints from customers.

The researchers note that although the intervention would potentially be acceptable to pub or bar managers, given there was no evidence that it can result in a loss in revenue, a nationwide policy would likely be resisted by the alcohol industry given its potential to reduce sales of targeted drinks. Public support for such a policy would depend on its effectiveness and how clearly this was communicated.

The research was funded by Wellcome.

Reference
Mantzari, E et al. Impact on wine sales of removing the largest serving size by the glass: an A-B-A reversal trial in 21 pubs, bars and restaurants in England. PLOS Medicine; DOI: 10.1371/journal.pmed.1004313



The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Accelerating how new drugs are made with machine learning

Digital image of a molecule

source: www.cam.ac.uk

Researchers have developed a platform that combines automated experiments with AI to predict how chemicals will react with one another, which could accelerate the design process for new drugs.

A deeper understanding of the chemistry could enable us to make pharmaceuticals and so many other useful products much faster.Emma King-Smith

Predicting how molecules will react is vital for the discovery and manufacture of new pharmaceuticals, but historically this has been a trial-and-error process, and the reactions often fail. To predict how molecules will react, chemists usually simulate electrons and atoms in simplified models, a process that is computationally expensive and often inaccurate.

Now, researchers from the University of Cambridge have developed a data-driven approach, inspired by genomics, where automated experiments are combined with machine learning to understand chemical reactivity, greatly speeding up the process. They’ve called their approach, which was validated on a dataset of more than 39,000 pharmaceutically relevant reactions, the chemical ‘reactome’.

Their results, reported in the journal Nature Chemistry, are the product of a collaboration between Cambridge and Pfizer.

“The reactome could change the way we think about organic chemistry,” said Dr Emma King-Smith from Cambridge’s Cavendish Laboratory, the paper’s first author. “A deeper understanding of the chemistry could enable us to make pharmaceuticals and so many other useful products much faster. But more fundamentally, the understanding we hope to generate will be beneficial to anyone who works with molecules.”

The reactome approach picks out relevant correlations between reactants, reagents, and performance of the reaction from the data, and points out gaps in the data itself. The data is generated from very fast, or high throughput, automated experiments.

“High throughput chemistry has been a game-changer, but we believed there was a way to uncover a deeper understanding of chemical reactions than what can be observed from the initial results of a high throughput experiment,” said King-Smith.

“Our approach uncovers the hidden relationships between reaction components and outcomes,” said Dr Alpha Lee, who led the research. “The dataset we trained the model on is massive – it will help bring the process of chemical discovery from trial-and-error to the age of big data.”

In a related paper, published in Nature Communications, the team developed a machine learning approach that enables chemists to introduce precise transformations to pre-specified regions of a molecule, enabling faster drug design.

The approach allows chemists to tweak complex molecules – like a last-minute design change – without having to make them from scratch. Making a molecule in the lab is typically a multi-step process, like building a house. If chemists want to vary the core of a molecule, the conventional way is to rebuild the molecule, like knocking the house down and rebuilding from scratch. However, core variations are important to medicine design.

A class of reactions, known as late-stage functionalisation reactions, attempts to directly introduce chemical transformations to the core, avoiding the need to start from scratch. However, it is challenging to make late-stage functionalisation selective and controlled – there are typically many regions of the molecules that can react, and it is difficult to predict the outcome.

“Late-stage functionalisations can yield unpredictable results and current methods of modelling, including our own expert intuition, isn’t perfect,” said King-Smith. “A more predictive model would give us the opportunity for better screening.”

The researchers developed a machine learning model that predicts where a molecule would react, and how the site of reaction vary as a function of different reaction conditions. This enables chemists to find ways to precisely tweak the core of a molecule.

“We trained the model on a large body of spectroscopic data – effectively teaching the model general chemistry – before fine-tuning it to predict these intricate transformations,” said King-Smith. This approach allowed the team to overcome the limitation of low data: there are relatively few late-stage functionalisation reactions reported in the scientific literature. The team experimentally validated the model on a diverse set of drug-like molecules and was able to accurately predict the sites of reactivity under different conditions.

“The application of machine learning to chemistry is often throttled by the problem that the amount of data is small compared to the vastness of chemical space,” said Lee. “Our approach – designing models that learn from large datasets that are similar but not the same as the problem we are trying to solve – resolves this fundamental low-data challenge and could unlock advances beyond late-stage functionalisation.”  

The research was supported in part by Pfizer and the Royal Society.

References:
Emma King-Smith et al. ‘Predictive Minisci Late Stage Functionalization with Transfer Learning.’ Nature Communications (2023). DOI: 10.1038/s41467-023-42145-1

Emma King-Smith et al. ‘Probing the Chemical “Reactome” with High Throughput Experimentation Data.’ Nature Chemistry (2023). DOI: 10.1038/s41557-023-01393-w



The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Feeling depressed linked to short-term increase in bodyweight among people with overweight or obesity

Person standing on white digital bathroom scale

source: www.cam.ac.uk

Increases in symptoms of depression are associated with a subsequent increase in bodyweight when measured one month later, new research from the University of Cambridge has found.

The study, published today in PLOS ONE, found that the increase was only seen among people with overweight or obesity, but found no link between generally having greater symptoms of depression and higher bodyweight.

Research has suggested a connection between weight and mental health – with each potentially influencing the other – but the relationship is complex and remains poorly understood, particularly in relation to how changes in an individual’s mental health influence their bodyweight over time.

To help answer this question, researchers at Cambridge’s Medical Research Council (MRC) Epidemiology Unit examined data from over 2,000 adults living in Cambridgeshire, UK, who had been recruited to the Fenland COVID-19 Study.

Participants completed digital questionnaires on mental wellbeing and bodyweight every month for up to nine months during the COVID-19 pandemic (August 2020 – April 2021) using a mobile app developed by Huma Therapeutics Limited.

Questions assessed an individual’s symptoms of depression, anxiety and perceived stress. A higher score indicated greater severity, with the maximum possible scores being 24 for depression, 21 for anxiety and 40 for stress. The team then used statistical modelling to explore whether having poorer mental wellbeing than usual was related to changes in bodyweight one month later.

The researchers found that for every increment increase in an individual’s usual score for depressive symptoms, their subsequent weight one month later increased by 45g. This may seem small but would mean, for example, that in an individual whose depressive symptoms score rose from five to 10 (equal to an increase from ‘mild’ to ‘moderate’ depressive symptoms) it would relate to an average weight gain of 225g (0.225kg).

This effect was only observed in those individuals with overweight (defined as BMI 25-29.9kg/m2) or with obesity (BMI of over 30kg/m2). Individuals with overweight had on average an increase of 52g for each increment point increase from their usual depressive symptoms score and for those with obesity the comparable weight gain was 71g. The effect was not seen in those individuals with a healthy weight.

First author Dr Julia Mueller from the MRC Epidemiology Unit said: “Overall, this suggests that individuals with overweight or obesity are more vulnerable to weight gain in response to feeling more depressed. Although the weight gain was relatively small, even small weight changes occurring over short periods of time can lead to larger weight changes in the long-term, particularly among those with overweight and obesity.

“People with a high BMI are already at greater risk from other health conditions, so this could potentially lead to a further deterioration in their health. Monitoring and addressing depressive symptoms in individuals with overweight or obesity could help prevent further weight gain and be beneficial to both their mental and physical health.”

The researchers found no evidence that perceived stress or anxiety were related to changes in weight.

Senior author Dr Kirsten Rennie from the MRC Epidemiology Unit said: “Apps on our phones make it possible for people to answer short questions at home more frequently and over extended periods of time, which provides much more information about their wellbeing. This technology could help us understand how changes in mental health influence behaviour among people with overweight or obesity and offer ways to develop timely interventions when needed.”

Although previous studies have suggested that poor mental health is both a cause and consequence of obesity, the research team found no evidence that weight predicted subsequent symptoms of depression.

The research was supported by the Medical Research Council.

Reference
Mueller, J et al. The relationship of within-individual and between-individual variation in mental health with bodyweight: An exploratory longitudinal study. PLOS ONE; 10 Jan 2024; DOI: 10.1371/journal.pone.0295117



The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Mysterious missing component in the clouds of Venus revealed

Sunrise over Venus

source: www.cam.ac.uk

Researchers may have identified the missing component in the chemistry of the Venusian clouds that would explain their colour and ‘splotchiness’ in the UV range, solving a longstanding mystery.

What are the clouds of Venus made of? Scientists know they are mainly made of sulfuric acid droplets, with some water, chlorine, and iron. Their concentrations vary with height in the thick and hostile Venusian atmosphere. But until now they have been unable to identify the missing component that would explain the clouds’ patches and streaks, only visible in the UV range.

In a study published in Science Advances, researchers from the University of Cambridge synthesised iron-bearing sulfate minerals that are stable under the harsh chemical conditions in the Venusian clouds. Spectroscopic analysis revealed that a combination of two minerals, rhomboclase and acid ferric sulfate, can explain the mysterious UV absorption feature on our neighbouring planet.

“The only available data for the composition of the clouds were collected by probes and revealed strange properties of the clouds that so far we have been unable to fully explain,” said Paul Rimmer from the Cavendish Laboratory and co-author of the study. “In particular, when examined under UV light, the Venusian clouds featured a specific UV absorption pattern. What elements, compounds, or minerals are responsible for such observation?”

Formulated on the basis of Venusian atmospheric chemistry, the team synthesised several iron-bearing sulfate minerals in an aqueous geochemistry laboratory in the Department of Earth Sciences. By suspending the synthesised materials in varying concentrations of sulfuric acid and monitor the chemical and mineralogical changes, the team narrowed down the candidate minerals to rhomboclase and acid ferric sulfate, of which the spectroscopic features were examined under light sources specifically designed to mimic the spectrum of solar flares (Rimmer’s FlareLab; Cavendish Laboratory).

Researchers from Harvard University provided measurements of the UV absorbance patterns of ferric iron under extreme acidic conditions, in an attempt to mimic the even more extreme Venusian clouds. The scientists are part of the newly-established Origins Federation, which promotes such collaborative projects.

“The patterns and level of absorption shown by the combination of these two mineral phases are consistent with the dark UV-patches observed in Venusian clouds,” said co-author Clancy Zhijian Jiang, from the Department of Earth Sciences, Cambridge. “These targeted experiments revealed the intricate chemical network within the atmosphere, and shed light on the elemental cycling on the Venusian surface.”

“Venus is our nearest neighbour, but it remains a mystery,” said Rimmer. “We will have a chance to learn much more about this planet in the coming years with future NASA and ESA missions set to explore its atmosphere, clouds and surface. This study prepares the grounds for these future explorations.”

The research was supported by the Simons Foundation, and the Origins Federation.

Reference:
Clancy Zhijian Jiang et al., ‘Iron-sulfur chemistry can explain the ultraviolet absorber in the clouds of Venus.’ Science Advances (2024). DOI:10.1126/sciadv.adg8826



The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

New trial of ‘pill-on-a-thread’ brings screening for oesophageal cancer closer

Pill-on-a-thread and capsule sponge

source: www.cam.ac.uk

A man from Cambridge is the first to join the surveillance part of a clinical trial that could see routine screening for oesophageal cancer introduced into the NHS, potentially halving deaths from this cancer every year.

The capsule sponge, a quick and simple test for Barrett’s oesophagus, could halve the number of deaths from oesophageal cancer every yearRebecca Fitzgerald

The capsule sponge, known as the pill-on-a-thread, is a quick and simple test for Barrett’s oesophagus, a condition that can be a precursor to cancer. Heartburn is a common symptom of Barrett’s oesophagus, a changing of cells in the food pipe.  

The BEST4 trial launched at Addenbrooke’s Hospital today is the final step to see if the capsule sponge can prevent oesophageal cancer when used to screen or monitor those most at risk of the disease. If so, it could become a national screening programme across the NHS, in the same way mammograms are used to screen for breast cancer.

The first stage of the trial, BEST4 Surveillance, is for people already diagnosed with Barrett’s oesophagus. It will look at whether the capsule sponge test could replace endoscopies to monitor their condition. Participants will receive both examinations during the trial with results used to assess their risk of developing oesophageal cancer. 

The second stage of the trial, BEST4 Screening, opens in the summer and will recruit 120,000 people aged over 55 on long-term treatment for heartburn.

The multi-million-pound trial is jointly funded by Cancer Research UK and the National Institute for Health and Care Research. It builds on decades of research led by Professor Rebecca Fitzgerald from the University of Cambridge. She and a team of scientists, clinicians and nurses at the Early Cancer Institute, University of Cambridge and Cancer Research UK Cambridge Centre, invented and refined the capsule sponge test.

Professor Fitzgerald said: “The capsule sponge, a quick and simple test for Barrett’s oesophagus, could halve the number of deaths from oesophageal cancer every year. Cases of oesophageal cancer have increased six fold since the 1990s.  On average only 12% of patients live more than five years after diagnosis. Most don’t realise there’s a problem until they have trouble swallowing. By then it is too late.

“The first phase of the trial looks at whether the capsule sponge can be used as a cancer early warning system for patients diagnosed with Barrett’s. Using the capsule sponge and a new set of lab tests, we will be monitoring patients to see if we can prevent more cases of cancer.”

Tim Cowper, 49, a brewer from Cambridge, has had acid reflux, or heartburn, every night since he was 16. A routine health check while he was at university resulted in the shock diagnosis of Barrett’s oesophagus. After his diagnosis, he has been monitored ever since.

Tim said: “I was alarmed when I was told that having Barrett’s meant having pre-cancerous cells in my gullet. Cancer is never a nice word to hear, especially when you are so young, but luckily, I’ve had my condition monitored.

“Since my diagnosis, I’ve been going for an endoscopy at least once every three years to monitor my oesophagus. It is not pleasant at all. Each time I have a thick tube pushed down through my mouth and I can feel every single one of the biopsies taken by the camera. Swallowing a capsule sponge is a much better experience and I now get the test before my regular endoscopy appointment.”

Barrett’s oesophagus is currently identified via an endoscopy and a biopsy in hospital following a GP referral. It is time-consuming, unpleasant, and quite invasive for patients, as well as being expensive for the healthcare system.

The capsule sponge is a small, easy to swallow capsule on a thread, which contains a sponge. The patient swallows the capsule which dissolves in the stomach and the sponge expands to the size of a 50p coin.

The sponge is carefully pulled back up using the string, collecting cells for laboratory testing. The test takes just 10 minutes and can be done in a GP surgery.

Cancer Research UK and others have funded several successful clinical trials to demonstrate that the test is safe, accurate and can detect 10 times more cases of Barrett’s oesophagus than standard practice.

The test is faster and cheaper than endoscopy, which is currently used to diagnose and monitor Barrett’s oesophagus and oesophageal cancer. It has been piloted in health services in England, Scotland and Northern Ireland for patients who are currently on waiting lists for endoscopy because they have long-term heartburn or diagnosed with Barrett’s oesophagus.

Executive Director of Research and Innovation at Cancer Research UK, Dr Iain Foulkes, said: “Around 59% of all oesophageal cancer cases are preventable. Yet endoscopy, the gold standard for diagnosing and treating this cancer, is labour-intensive. We need better tools and tests to monitor people most at risk.

“Backed by funding from Cancer Research UK, the capsule sponge has become one of the most exciting early detection tools to emerge in recent years. It’s a remarkable invention by Professor Fitzgerald and her team, and previous trials have shown how powerful it can be in identifying cancer earlier.

“There are 9,200 people diagnosed with oesophageal cancer in the UK every year and the capsule sponge will mean they can benefit from kinder treatment options, if their cancer is caught at a much earlier stage.”

The future Cambridge Cancer Research Hospital will bring together clinical and research expertise, including Professor Fitzgerald’s work, under one roof.  It will enable the development and discovery of more non-invasive devices like the capsule sponge, to detect cancer earlier, and save more lives.

The BEST4 Surveillance Trial is led from Cambridge University Hospitals NHS Foundation Trust and the University of Cambridge, with trial design, coordination and analysis of results by the Cancer Research UK Cancer Prevention Trials Unit at Queen Mary University of London.

Further information about the BEST4 trial.

Adapted from a press release from Cambridge University Hospitals NHS Foundation Trust



The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Pioneering transplant surgeon Sir Roy Calne dies aged 93

Professor Sir Roy Calne

source: www.cam.ac.uk

Professor Sir Roy Calne, the pioneering transplant surgeon who carried out the first liver transplant in the UK during his time at Cambridge, has died aged 93.

Professor Calne pursued a career as a transplant surgeon after his experience as a medical student at Guy’s Hospital in the 1950s, when he was told there was nothing that could be done for a man dying of kidney failure.

He was appointed to the position of Professor of Surgery at the University of Cambridge in 1965, where he remained until 1998. He established the kidney transplant programme at Addenbrooke’s Hospital, now part of Cambridge University Hospitals (CUH) NHS Foundation Trust.

On 2 May 1968, Professor Calne performed the first successful liver transplant in Europe. Almost two decades later, in 1986, he would go on to carry out the world’s first liver, heart and lung transplant together with Professor John Wallwork at Papworth Hospital in Cambridge. Professor Wallwork described Professor Calne as “a giant in the transplant world and an innovative surgeon”.

Professor Calne was a pioneer in immunosuppression – the use of drugs to dampen the response of the immune system in order to prevent the body from rejecting transplanted organs, a potentially fatal complication. This would go on to revolutionise transplantation. He was among the first to introduce the immunosuppressant drug cyclosporin into routine clinical care, for which he shared the prestigious Lasker Award in 2012.

Despite retiring from the Chair of Surgery at the University of Cambridge in 1998, he continued to perform kidney transplants until well into his seventies, and remained active in research into his eighties.

Professor Deborah Prentice, Vice-Chancellor of the University of Cambridge, said: “Professor Calne was a true pioneer, driven by the desire to help his patients. His work here in Cambridge as a scientist and clinician has saved many thousands of lives and continues to have a major impact worldwide. We are saddened by his loss and pay tribute to his extraordinary achievements.”

Patrick Maxwell, Regius Professor of Physic at the University of Cambridge, added: “Sir Roy was a brilliant man who made a series of major breakthroughs in transplant surgery. His work has transformed the lives of countless patients around the world.”

Professor Calne was a Fellow of Trinity Hall, Cambridge, from 1965-1998. Following his retirement, he was made an Honorary Fellow. In 2018, he attended celebrations at the College to commemorate the 50th anniversary of his pioneering liver transplant surgery, where he was able to meet patients and colleagues from a career spanning six decades. To mark the anniversary, he helped launch a £250,000 appeal by Addenbrooke’s Charitable Trust to trial and run a new perfusion machine, which would allow more donated organs to be rendered suitable for transplantation. In 2021, the Addenbrooke’s Transplant Unit was named after him.

Dr Mike More, Chair of CUH, said: “Sir Roy leaves behind a truly amazing legacy and many of our staff will remember him with fondness for his vision and genuine kindness. We will all miss him very much.”



The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified.  All rights reserved. We make our image and video content available in a number of ways – as here, on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Reducing inequality is essential in tackling climate crisis, researchers argue

Businesswoman on electric bike

source: www.cam.ac.uk

Promoting climate-friendly behaviours will be more successful in societies where everyone has the capacity: financially, physically, and timewise, to make changes.

People on lower incomes can be more restricted in the things they can do to help reduce their carbon footprint.Charlotte Kukowski

In a report just published in the journal Nature Climate Change, researchers argue that tackling inequality is vital in moving the world towards Net-Zero – because inequality constrains who can feasibly adopt low-carbon behaviours.

They say that changes are needed across society if we are to mitigate climate change effectively. Although wealthy people have very large carbon footprints, they often have the means to reduce their carbon footprint more easily than those on lower incomes.

The researchers say there is lack of political recognition of the barriers that can make it difficult for people to change to more climate-friendly behaviours.

They suggest that policymakers provide equal opportunities for low-carbon behaviours across all income brackets of society.

The report defines inequality in various ways: in terms of wealth and income, political influence, free time, and access to low-carbon options such as public transport and housing insulation subsidies.

“It’s increasingly acknowledged that there’s inequality in terms of who causes climate change and who suffers the consequences, but there’s far less attention being paid to the effect of inequality in changing behaviours to reduce carbon emissions,” said Dr Charlotte Kukowski, a postdoctoral researcher in the University of Cambridge Departments of Psychology and Zoology, and first author of the report.

She added: “People on lower incomes can be more restricted in the things they can do to help reduce their carbon footprint, in terms of the cost and time associated with doing things differently.”

The researchers found that deep-rooted inequalities can restrict people’s capacity to switch to lower-carbon behaviours in many ways. For example:

Insulating a house in the UK can be costly, and government subsidies are generally only available for homeowners; renters have little control over the houses they live in.

The UK has large numbers of old, badly insulated houses that require more energy to heat than new-build homes. The researchers call for appropriate government schemes that make it more feasible for people in lower income groups to reduce the carbon emissions of their home.

Cooking more meat-free meals: plant-based meat alternatives currently tend to be less affordable than the animal products they are trying to replace.

Eating more plant-based foods instead of meat and animal-derived products is one of the most effective changes an individual can make in reducing their carbon footprint.

Buying an electric car or an electric bike is a substantial upfront cost, and people who aren’t in permanent employment often can’t benefit from tax breaks or financing available through employer schemes.

Other low-carbon transport options – such as using public transport instead of a private car – are made less feasible for many due to poor services, particularly in rural areas.

Sometimes the lower-carbon options are more expensive – and this makes them less accessible to people on lower incomes.

“If you have more money you’re likely to cause more carbon emissions, but you’re also more likely to have greater ability to change the things you do and reduce those emissions,” said Dr Emma Garnett, a postdoctoral researcher at the University of Oxford and second author of the report.

She added: “Interventions targeting high-emitting individuals are urgently needed, but also many areas where there are lower-carbon choices – like food and transport – need everyone to be involved.”

The researchers say that campaigns to encourage people to switch to lower-carbon behaviours have tended to focus on providing information. While this is important in helping people understand the issues, there can still be many barriers to making changes.

They suggest a range of policy interventions, such as urban planning to include bus and bike lanes and pedestrian-friendly routes, progressive taxation rates on wealth and income, and employer-subsidised low-carbon meal options.

The research was funded by the Swiss National Science Foundation and Wellcome.

Reference: Kukowski, C A & Garnett, E E: ‘Tackling Inequality is Essential for Behaviour Change for Net Zero.’ Nature Climate Change, December 2023. DOI: 10.1038/s41558-023-01900-4



The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified.  All rights reserved. We make our image and video content available in a number of ways – as here, on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Cambridge achievers recognised in 2024 New Year Honours list

Senate house

source: www.cam.ac.uk

Academics and staff associated with the University of Cambridge feature in the 2024 list, which recognises the achievements and service of people across the UK, from all walks of life.

Professor Dame Carol Black is awarded a Dame Grand Cross (GBE) for public service. Black was Principal of Newnham College from 2012-2019 and formerly a Deputy Vice-Chancellor of the University of Cambridge. GBE is the highest rank in the Order, and rarely awarded, to recognise the most exceptional and sustained service to the UK. Since its creation in 1917, fewer than 80 women have been awarded a GBE.

She said: “I am absolutely delighted to have been made a Dame Grand Cross of the Order of the British Empire. This award comes almost 20 years after I received a DBE for services to medicine and recognises the progress being made to tackle some of the most entrenched and interrelated problems in society – poverty, homelessness, unemployment, and drug dependency. My heartfelt thanks go to everyone who has helped and supported me, and to those individuals doing great work on the frontline to change culture and practice.”

Composer Judith Weir, Honorary Fellow and alumna of King’s College, Cambridge, is awarded Dame Commander of the Order of the British Empire for services to music. Weir is Master of the King’s Music, having been appointed by Queen Elizabeth II in 2014, and has twice written a specially-commissioned carol for the college’s A Festival of Nine Lessons and Carols.

Organist, conductor and broadcaster Anna Lapwood, Janeway Director of Music at Pembroke College, Cambridge, is awarded Member of the Order of the British Empire (MBE) for services to music. Lapwood reaches a huge audience through her concerts and via social media with over 1 million followers across all platforms. Her passion for the organ is matched by her mission to support girls and women in music.

She said: “When you work as a musician, so much of what you do isn’t quantifiable or finite – your work on a certain piece is never ‘finished’, and your playing is always changing and developing. Receiving this award feels like something concrete – a deeply significant moment in my musical journey.” 

Gerard Grech, former CEO and Founder of Tech Nation, is awarded Commander of the Order of the British Empire (CBE) for services to the technology sector. He joined Cambridge Enterprise this year to lead a new flagship initiative, ‘Founders at the University of Cambridge’, that will support University founders to make an even greater impact on the world in the technology and software sectors.

Grech said: “I’m honoured to have been recognised for my contribution to the growing success of the UK’s tech and startup sector which is increasingly creating globally important tech and science-backed companies, from my time at Tech Nation. This honour is also recognition of the founders, ecosystem experts, investors, policy makers, and my colleagues who generously shared their knowledge and insights to support the UK’s most ambitious tech entrepreneurs. I would like to extend my sincere thanks to them all for all their hard work.”

Dr Sabesan Sithamparanathan, Enterprise Fellow at Girton College, Cambridge, and former student in the University’s Department of Engineering, is awarded Officer of the Order of the British Empire (OBE) for services to innovation technology. As Founder & President of PervasID he pioneered the world’s most accurate battery-free, real-time location tracking technology which is now in use by several NHS trusts, the largest aircraft manufacturers, airlines and blue-chip retailers.

He said: “I am absolutely delighted; this is a great honour and testament to the hard work and innovation of the entire team at PervasID. Our products offer a national and international benefit and we will continue to pioneer technology that has a wider value to society as a whole.”

Professor Ann Prentice, Honorary Senior Visiting Fellow at the University’s MRC Epidemiology Unit, is awarded Commander of the Order of the British Empire (CBE) for services to British and Global Public Health Nutrition. A former director of the MRC Elsie Widdowson Laboratory (previously MRC Human Nutrition Research) at Cambridge, and programme leader of the MRC Nutrition and Bone Health Research Group at Cambridge, she was also head of the calcium, vitamin D and bone health research team at MRC Unit The Gambia. Her research is focused on life-course nutritional requirements for population health, with an emphasis on calcium and vitamin D, and encompasses the nutritional problems of both affluent and resource-limited societies.

She said: “I am delighted to receive this honour on behalf of all the people, in this country and worldwide, who have worked with me to improve our understanding of the links between nutrition and health.”

Dr Gillian Tett, Provost at Kings College, Cambridge, is awarded Officer of the Order of the British Empire (OBE) for services to Economic Journalism. Tett, a former student at the University, is currently Chairman of the US Editorial Board and America Editor-at-Large of the Financial Times.  She became the 45th Provost at King’s College in October 2023, and is renowned for her warnings ahead of the financial crisis of 2008.

Tett said: “I am deeply honoured to receive an OBE – and hope this helps to champion the importance of British intellectual capital, both in journalism and higher education. Thank you to everyone who has helped me in my career!”

Joan Winterkorn is awarded Member of the Order of the British Empire (MBE) for services to heritage and culture. She is an expert on archives and literary and historical manuscripts, and was formerly in the antiquarian and rare book trade. In Cambridge she played a vital role in enabling the Churchill Archive Centre to acquire the papers of Sir Winston Churchill and Lady Thatcher and the University Library to gain those of Siegfried Sassoon and Dame Margaret Drabble. In 2019 she received the honorary degree of Master of Arts from the University.

Maxine Purdie, Head of Catering and Conferences at Girton College, University of Cambridge, is awarded an MBE for services to knowledge exchange. Prior to arriving at Girton, she spent two decades at PraxisAuril, a world-leading professional association for knowledge exchange practitioners, where she became CEO and a Board Director.

Dr Rosie Trevelyan, Director of the Tropical Biology Association, is awarded an MBE for her services to environmental science and International conservation. Over the last three decades, Trevelyan developed the Tropical Biology Association into a globally respected organisation that offers an exceptionally high standard of ecology and conservation training to scientists, project managers and educators working to manage and safeguard tropical biodiversity in the long term. This international NGO has offices in the David Attenborough Building, Cambridge, UK and at Nature Kenya in Nairobi, Kenya. 

Professor Elizabeth Robertson, an alumna and Honorary Fellow of Darwin College, has been appointed a CBE. Recognised as a world leader in mammalian developmental genetics, Robertson‘s early work focused on embryonic stem cell gene targeting, a technique that pioneered the ability to genetically alter mice. She initiated this work as a post-doctoral fellow with Sir Martin Evans at the University of Cambridge. “It was a big surprise and extremely gratifying to have received this honour,” Robertson said.

The Archbishop of Canterbury, Justin Welby (Alumnus and Honorary Fellow of Trinity College), was appointed GCVO (Knight Grand Cross of the Royal Victorian Order).

The Dean of Westminster, David Hoyle (Alumnus of Corpus Christi College, Honorary Fellow and former Fellow of Magdalene College) was appointed KCVO (Knight Commander of the Royal Victorian Order). 

Maxine Ficarra, formerly Chief Executive Officer of PraxisAuril, the UK’s professional association for Knowledge Exchange practitioners, has been made an MBE for her services to Knowledge Exchange. She led the not-for-profit, which was co-founded in 2002 by Professor David Secher, Life Fellow of Gonville & Caius College, and former Director of Research Services at the University of Cambridge, for 20 years.



The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified.  All rights reserved. We make our image and video content available in a number of ways – as here, on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

University academics ranked among best in the world

Professor Kay-Tee Khaw who has been named as the top female scientist in Europe by Research.com

source: www.cam.ac.uk

Twelve academics from the University of Cambridge have been ranked among the top female scientists in the world – with one claiming the top spot for Europe.

The Research.com Best Female Scientists in the World 2023 rankings are based on an analysis of more than 166,000 profiles of scientists across the globe. Position in the ranking is according to a scientist’s total ‘H-index’ – rate of the publications made within a given area of research as well as awards and recognitions. Only the top 1000 scholars with the highest H-index are featured in the ranking.

Kay-Tee Khaw, an Emeritus Professor in Gerontology and a Gonville & Caius Fellow, is placed fifth worldwide and tops the list for Europe. Professor Khaw, who was named a CBE in 2003 for Services to Medicine, published a study on how modest differences in lifestyle are associated with better life expectancy which informed the UK Government’s ‘Small changes, big difference’ campaign in 2006.

Also high in the rankings is Barbara Sahakian, Professor of Clinical Neuropsychology in the Department of Psychiatry and a Fellow of Clare Hall, who is placed sixth in the UK. Professor Sahakian’s recent research includes a study showing the benefits to mental health and cognitive performance of reading for pleasure at an early age, and seven healthy lifestyle factors that reduce the risk of depression.

Joining Professor Khaw and Professor Sahakian in the top 10 in the UK is Carol Brayne, Professor of Public Health Medicine in the Department of Psychiatry and Fellow of Darwin. Awarded a CBE in 2017 for Services to Public Health Medicine, Professor Brayne has pioneered the study of dementia in populations.

Nine other University of Cambridge scientists also make the rankings:

Professor Gillian Murphy (Department of Oncology), an international leader in the field of metalloproteinases, who has defined their roles in arthritis and cancer.

Professor Claudia Langenberg (MRC Epidemiology Unit), a public health specialist combining her expertise with research focused on molecular epidemiology.

Professor Nita Forouhi (MRC Epidemiology Unit), a physician scientist, MRC Investigator and Programme Leader in Nutritional Epidemiology, whose research on the link between diet, nutrition and chronic diseases like type 2 diabetes has informed health policy.

Professor Alison Dunning (Centre for Cancer Genetic Epidemiology, Department of Oncology), a genetic epidemiologist working on the risk of breast and other hormonal cancers.

Professor Karalyn Patterson (MRC Cognition and Brain Sciences Unit, Cambridge Centre for Frontotemporal Dementia and Related Disorders), a Fellow of Darwin College, who specialises in what we can learn about the organisation and neural representation of language and memory from the study of neurological patients suffering from the onset of brain disease or damage in adulthood.

Professor Dame Clare Grey (Department of Chemistry), a materials chemist whose work has paved the way for less expensive, longer-lasting batteries and helped improve storage systems for renewable energy, she is Chief Scientist and co-founder of Nyobolt, a company that is developing ultrafast-charging batteries for electric vehicles.

Professor Sharon Peacock (Department of Medicine), who has built her scientific expertise around pathogen genomics, antimicrobial resistance, and a range of tropical diseases, was the founding director of the COVID-19 Genomics UK Consortium which informed the COVID-19 pandemic response.

Professor Maria Grazia Spillantini (Department of Clinical Neurosciences and Fellow of Clare Hall) has been researching the cause of dementia for many years and was the first to identify the specific protein deposit found in Parkinson’s disease.

Professor Dame Theresa Marteau (Department of Public Health and Primary Care and Honorary Fellow of Christ’s College), a behavioural scientist, focuses on the development and evaluation of interventions to change behaviour (principally food, tobacco and alcohol consumption) to improve population health and reduce health inequalities, with a particular focus on targeting non-conscious processes.

Speaking on publication of this year’s rankings, Imed Bouchrika, Co-Founder of Research.com and Chief Data Scientist, said: “The purpose of this online ranking of the world’s leading female scientists is to recognize the efforts of every female scientist who has made the courageous decision to pursue opportunities despite barriers.

“Their unwavering determination in the face of difficulties serves as a source of motivation for all young women and girls who pursue careers in science.”



The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified.  All rights reserved. We make our image and video content available in a number of ways – as here, on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Academics to explore legacy of Genghis Khan

Large statue of Genghis Khan that sits in the central square of Ulaanbaatar in Mongolia

source: www.cam.ac.uk

Researchers at the University of Cambridge have signed an agreement with the Mongolian government which will see them explore the legacy of the legendary figure Genghis Khan – or Chinggis Khaan as he is known in Mongolia.

Under the recently signed Memorandum of Understanding, Cambridge’s Mongolia & Inner Asia Studies Unit (MIASU) will work together with the Mongolian government to promote and further academic links, including the possibility of a programme for visiting research fellowships and travel grants to promote the study of Chinggis Khaan.

The agreement was signed during a visit to the UK by Mongolian Culture Minister Nomin Chinbat, a former media CEO who brought the TV show Mongolia’s Got Talent to the Asian country. The visit adds to a growing awareness of Mongolian culture in the UK, with historic art and precious artefacts from the early years of the nomadic Mongol Empire set to be displayed at the Royal Academy of Arts in London, and the opening of The Mongol Khan theatre production at the London Coliseum.

Professor David Sneath, Director of the Mongolia & Inner Asia Studies Unit at the University of Cambridge, said:

 “This is all about exploring the historical reality behind the myth… We are interested not just in the man himself, Chinggis Khaan – although of course he is of great historical interest – but in his legacy. We are trying to encourage a deeper study of Chinggis Khan and his impact.”

Minister Chinbat said: “Of course Chinggis Khaan is primarily known for his warriorship, but he was also a great diplomat, innovator and ruler.  How many people know he invented the postal service, the first passports? That he showed great religious tolerance, and he himself was a peacemaker?

“That’s why we look forward to working with the University of Cambridge to foster the next generation of Mongolian academics and strengthen understanding of the Mongol Empire’s impact across the world.”

MIASU’s Professor Uradyn E Bulag added: “Because in Mongolia we didn’t have a written tradition as strong as our neighbours, to some extent our history – and the history of Chinggis Khan – was written by others… This will be a chance to hopefully reset the balance.”



The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified.  All rights reserved. We make our image and video content available in a number of ways – as here, on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Using machine learning to monitor driver ‘workload’ could help improve road safety

Head up display of traffic information and weather as seen by the driver

source: www.cam.ac.uk

Researchers have developed an adaptable algorithm that could improve road safety by predicting when drivers are able to safely interact with in-vehicle systems or receive messages, such as traffic alerts, incoming calls or driving directions.

There is a lot of information that a vehicle can make available to the driver, but it’s not safe or practical to do so unless you know the status of the driverBashar Ahmad

The researchers, from the University of Cambridge, working in partnership with Jaguar Land Rover (JLR) used a combination of on-road experiments and machine learning as well as Bayesian filtering techniques to reliably and continuously measure driver ‘workload’. Driving in an unfamiliar area may translate to a high workload, while a daily commute may mean a lower workload.

The resulting algorithm is highly adaptable and can respond in near real-time to changes in the driver’s behaviour and status, road conditions, road type, or driver characteristics.

This information could then be incorporated into in-vehicle systems such as infotainment and navigation, displays, advanced driver assistance systems (ADAS) and others. Any driver-vehicle interaction can be then customised to prioritise safety and enhance the user experience, delivering adaptive human-machine interactions. For example, drivers are only alerted at times of low workload, so that the driver can keep their full concentration on the road in more stressful driving scenarios. The results are reported in the journal IEEE Transactions on Intelligent Vehicles.

“More and more data is made available to drivers all the time. However, with increasing levels of driver demand, this can be a major risk factor for road safety,” said co-first author Dr Bashar Ahmad from Cambridge’s Department of Engineering. “There is a lot of information that a vehicle can make available to the driver, but it’s not safe or practical to do so unless you know the status of the driver.”

A driver’s status – or workload – can change frequently. Driving in a new area, in heavy traffic or poor road conditions, for example, is usually more demanding than a daily commute.

“If you’re in a demanding driving situation, that would be a bad time for a message to pop up on a screen or a heads-up display,” said Ahmad. “The issue for car manufacturers is how to measure how occupied the driver is, and instigate interactions or issue messages or prompts only when the driver is happy to receive them.”

There are algorithms for measuring the levels of driver demand using eye gaze trackers and biometric data from heart rate monitors, but the Cambridge researchers wanted to develop an approach that could do the same thing using information that’s available in any car, specifically driving performance signals such as steering, acceleration and braking data. It should also be able to consume and fuse different unsynchronised data streams that have different update rates, including from biometric sensors if available.

To measure driver workload, the researchers first developed a modified version of the Peripheral Detection Task to collect, in an automated way, subjective workload information during driving. For the experiment, a phone showing a route on a navigation app was mounted to the car’s central air vent, next to a small LED ring light that would blink at regular intervals. Participants all followed the same route through a mix of rural, urban and main roads. They were asked to push a finger-worn button whenever the LED light lit up in red and the driver perceived they were in a low workload scenario.

Video analysis of the experiment, paired with the data from the buttons, allowed the researchers to identify high workload situations, such as busy junctions or a vehicle in front or behind the driver behaving unusually.

The on-road data was then used to develop and validate a supervised machine learning framework to profile drivers based on the average workload they experience, and an adaptable Bayesian filtering approach for sequentially estimating, in real-time, the driver’s instantaneous workload, using several driving performance signals including steering and braking. The framework combines macro and micro measures of workload where the former is the driver’s average workload profile and the latter is the instantaneous one.

“For most machine learning applications like this, you would have to train it on a particular driver, but we’ve been able to adapt the models on the go using simple Bayesian filtering techniques,” said Ahmad. “It can easily adapt to different road types and conditions, or different drivers using the same car.”

The research was conducted in collaboration with JLR who did the experimental design and the data collection. It was part of a project sponsored by JLR under the CAPE agreement with the University of Cambridge.

“This research is vital in understanding the impact of our design from a user perspective, so that we can continually improve safety and curate exceptional driving experiences for our clients,” said JLR’s Senior Technical Specialist of Human Machine Interface Dr Lee Skrypchuk. “These findings will help define how we use intelligent scheduling within our vehicles to ensure drivers receive the right notifications at the most appropriate time, allowing for seamless and effortless journeys.”

The research at Cambridge was carried out by a team of researchers from the Signal Processing and Communications Laboratory (SigProC), Department of Engineering, under the supervision of Professor Simon Godsill. It was led by Dr Bashar Ahmad and included Nermin Caber (PhD student at the time) and Dr Jiaming Liang, who all worked on the project while based at Cambridge’s Department of Engineering.

Reference:
Nermin Caber et al. ‘Driver Profiling and Bayesian Workload Estimation Using Naturalistic Peripheral Detection Study Data.’ IEEE Transactions on Intelligent Vehicles (2023). DOI: 10.1109/TIV.2023.3313419



The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified.  All rights reserved. We make our image and video content available in a number of ways – as here, on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Researchers redesign future mRNA therapeutics to prevent potentially harmful immune responses

Illustration of mRNA strand

source: www.cam.ac.uk

Researchers have discovered that misreading of therapeutic mRNAs by the cell’s decoding machinery can cause an unintended immune response in the body. They have identified the sequence within the mRNA that causes this to occur and found a way to prevent ‘off-target’ immune responses to enable the safer design of future mRNA therapeutics.

As billions of pounds flow into the next set of mRNA treatments, it is essential that these therapeutics are designed to be free from unintended side-effects.Anne Willis

mRNA – or ‘messenger ribonucleic acid’ – is the genetic material that tells cells in the body how to make a specific protein. Researchers from the Medical Research Council (MRC) Toxicology Unit have discovered that the cellular machinery that ‘reads’ mRNAs ‘slips’ when confronted with repeats of a chemical modification commonly found in mRNA therapeutics. In addition to the target protein, these slips lead to the production of ‘off-target’ proteins triggering an unintended immune response.

mRNA vaccines are considered game changing. They have been used to control the COVID-19 pandemic and are already proposed to treat various cancers, cardiovascular, respiratory, and immunological diseases in the future.

This revolutionary class of therapeutics was made possible in part through the work of biochemist Katalin Karikó and immunologist Drew Weissman. They demonstrated that by adding chemical modifications to the bases – the building blocks of mRNA – the synthetic mRNAs could bypass some of our body’s immune defences allowing a therapeutic to enter the cell and exert its effects. This discovery led to their award of the Nobel Prize in Physiology and Medicine in 2023.

The latest developments, led by biochemist Professor Anne Willis and immunologist Dr James Thaventhiran from the MRC Toxicology Unit at the University of Cambridge, build upon previous advances to ensure the prevention of any safety issues linked with future mRNA-based therapeutics. Their report is published today in the journal Nature.

The researchers identified that bases with a chemical modification called N1-methylpseudouridine – which are currently contained in mRNA therapies – are responsible for the ‘slips’ along the mRNA sequence.

In collaboration with researchers at the Universities of Kent, Oxford and Liverpool, the MRC Toxicology Unit team tested for evidence of the production of ‘off-target’ proteins in people who received the mRNA Pfizer vaccine against COVID-19. They found an unintended immune response occurred in one third of the 21 patients in the study who were vaccinated – but with no ill-effects, in keeping with the extensive safety data available on these COVID-19 vaccines.

The team then redesigned mRNA sequences to avoid these ‘off-target’ effects, by correcting the error-prone genetic sequences in the synthetic mRNA. This produced the intended protein. Such design modifications can easily be applied to future mRNA vaccines to produce their desired effects while preventing hazardous and unintended immune responses.

“Research has shown beyond doubt that mRNA vaccination against COVID-19 is safe. Billions of doses of the Moderna and Pfizer mRNA vaccines have been safely delivered, saving lives worldwide,” said Dr James Thaventhiran from the MRC Toxicology Unit, joint senior author of the report.

He added: “We need to ensure that mRNA vaccines of the future are as reliable. Our demonstration of ‘slip-resistant’ mRNAs is a vital contribution to future safety of this medicine platform.”

“These new therapeutics hold much promise for the treatment of a wide range of diseases. As billions of pounds flow into the next set of mRNA treatments, it is essential that these therapeutics are designed to be free from unintended side-effects,” said Professor Anne Willis, Director of the MRC Toxicology Unit and joint senior author of the report.

Thaventhiran, who is also a practising clinician at Addenbrooke’s hospital, said: “We can remove the error-prone code from the mRNA in vaccines so the body will make the proteins we want for an immune response without inadvertently making other proteins as well. The safety concern for future mRNA medicines is that mis-directed immunity has huge potential to be harmful, so off-target immune responses should always be avoided.”

Willis added: “Our work presents both a concern and a solution for this new type of medicine, and result from crucial collaborations between researchers from different disciplines and backgrounds. These findings can be implemented rapidly to prevent any future safety problems arising and ensure that new mRNA therapies are as safe and effective as the COVID-19 vaccines.”

Using synthetic mRNA for therapeutic purposes is attractive because it is cheap to produce, so can address substantial health inequalities across the globe by making these medicines more accessible. Moreover, synthetic mRNAs can be changed rapidly – for example to create a new COVID-19 variant vaccine.

In the Moderna and Pfizer COVID-19 vaccines, synthetic mRNA is used to enable the body to make the spike protein from SARS-CoV-2. The body recognises the viral proteins generated by mRNA vaccines as foreign and generates protective immunity. This persists, and if the body is later exposed to the virus its immune cells can neutralise it before it can cause serious illness.

The cell’s decoding machinery is called a ribosome. It ‘reads’ the genetic code of both natural and synthetic mRNAs to produce proteins. The precise positioning of the ribosome on the mRNA is essential to make the right proteins because the ribosome ‘reads’ the mRNA sequence three bases at a time. Those three bases determine what amino acid is added next into the protein chain. Therefore, even a tiny shift in the ribosome along the mRNA will massively distort the code and the resulting protein.

When the ribosome is confronted with a string of these modified bases called N1-methylpseudouridine in the mRNA, it slips around 10% of the time causing the mRNA to be misread and unintended proteins to be produced – enough to trigger an immune response. Removing these runs of N1-methylpseudouridine from the mRNAs prevents ‘off-target’ protein production.

This research was funded by the Medical Research Council and the Wellcome LEAP R3 programme, and supported by the NIHR Cambridge BRC.

Reference: Mulroney, T E et al: ‘(N)1-methylpseudouridylation of mRNA causes +1 ribosomal frameshifting.’ Nature, Dec 23. DOI: 10.1038/s41586-023-06800-3



The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified.  All rights reserved. We make our image and video content available in a number of ways – as here, on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Diamonds and rust help unveil ‘impossible’ quasi-particles

Magnetic monopoles in hematite

source: www.cam.ac.uk

Researchers have discovered magnetic monopoles – isolated magnetic charges – in a material closely related to rust, a result that could be used to power greener and faster computing technologies.

If monopoles did exist, and we were able to isolate them, it would be like finding a missing puzzle piece that was assumed to be lostMete Atatüre

Researchers led by the University of Cambridge used a technique known as diamond quantum sensing to observe swirling textures and faint magnetic signals on the surface of hematite, a type of iron oxide.

The researchers observed that magnetic monopoles in hematite emerge through the collective behaviour of many spins (the angular momentum of a particle). These monopoles glide across the swirling textures on the surface of the hematite, like tiny hockey pucks of magnetic charge. This is the first time that naturally occurring emergent monopoles have been observed experimentally.

The research has also shown the direct connection between the previously hidden swirling textures and the magnetic charges of materials like hematite, as if there is a secret code linking them together. The results, which could be useful in enabling next-generation logic and memory applications, are reported in the journal Nature Materials.

According to the equations of James Clerk Maxwell, a giant of Cambridge physics, magnetic objects, whether a fridge magnet or the Earth itself, must always exist as a pair of magnetic poles that cannot be isolated.

“The magnets we use every day have two poles: north and south,” said Professor Mete Atatüre, who led the research. “In the 19th century, it was hypothesised that monopoles could exist. But in one of his foundational equations for the study of electromagnetism, James Clerk Maxwell disagreed.”

Atatüre is Head of Cambridge’s Cavendish Laboratory, a position once held by Maxwell himself. “If monopoles did exist, and we were able to isolate them, it would be like finding a missing puzzle piece that was assumed to be lost,” he said.

About 15 years ago, scientists suggested how monopoles could exist in a magnetic material. This theoretical result relied on the extreme separation of north and south poles so that locally each pole appeared isolated in an exotic material called spin ice.

However, there is an alternative strategy to find monopoles, involving the concept of emergence. The idea of emergence is the combination of many physical entities can give rise to properties that are either more than or different to the sum of their parts.

Working with colleagues from the University of Oxford and the National University of Singapore, the Cambridge researchers used emergence to uncover monopoles spread over two-dimensional space, gliding across the swirling textures on the surface of a magnetic material.

The swirling topological textures are found in two main types of materials: ferromagnets and antiferromagnets. Of the two, antiferromagnets are more stable than ferromagnets, but they are more difficult to study, as they don’t have a strong magnetic signature.

To study the behaviour of antiferromagnets, Atatüre and his colleagues use an imaging technique known as diamond quantum magnetometry. This technique uses a single spin – the inherent angular momentum of an electron – in a diamond needle to precisely measure the magnetic field on the surface of a material, without affecting its behaviour.

For the current study, the researchers used the technique to look at hematite, an antiferromagnetic iron oxide material. To their surprise, they found hidden patterns of magnetic charges within hematite, including monopoles, dipoles and quadrupoles.

“Monopoles had been predicted theoretically, but this is the first time we’ve actually seen a two-dimensional monopole in a naturally occurring magnet,” said co-author Professor Paolo Radaelli, from the University of Oxford.

“These monopoles are a collective state of many spins that twirl around a singularity rather than a single fixed particle, so they emerge through many-body interactions. The result is a tiny, localised stable particle with diverging magnetic field coming out of it,” said co-first author Dr Hariom Jani, from the University of Oxford.

“We’ve shown how diamond quantum magnetometry could be used to unravel the mysterious behaviour of magnetism in two-dimensional quantum materials, which could open up new fields of study in this area,” said co-first author Dr Anthony Tan, from the Cavendish Laboratory. “The challenge has always been direct imaging of these textures in antiferromagnets due to their weaker magnetic pull, but now we’re able to do so, with a nice combination of diamonds and rust.”

The study not only highlights the potential of diamond quantum magnetometry but also underscores its capacity to uncover and investigate hidden magnetic phenomena in quantum materials. If controlled, these swirling textures dressed in magnetic charges could power super-fast and energy-efficient computer memory logic.

The research was supported in part by the Royal Society, the Sir Henry Royce Institute, the European Union, and the Engineering and Physical Sciences Research Council (EPSRC), part of UK Research and Innovation (UKRI).

Reference:
K C Tan, Hariom Jani, Michael Högen et al. ‘Revealing Emergent Magnetic Charge in an Antiferromagnet with Diamond Quantum Magnetometry.’ Nature Materials (2023). DOI: 10.1038/s41563-023-01737-4.



The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified.  All rights reserved. We make our image and video content available in a number of ways – as here, on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Cambridge researchers recognised as Future Leaders by UKRI

Alecia-Jane Twigger, one of the Future Leaders

source: www.cam.ac.uk

Four researchers are among the UK’s “most promising research leaders” who will benefit from £101 million from UKRI to tackle major global issues and commercialise their innovations.

The fellows announced today illustrate how this scheme empowers talented researchers and innovators to build the diverse and connected research and innovation system we need to shorten the distance between discovery and prosperity across the UK.Ottoline Leyser, UKRI Chief Executive

Future Leaders Fellowships are awarded by UK Research and Innovation (UKRI) to support universities and businesses in developing their most talented early career researchers and innovators, and to attract new people to their organisations, including from overseas.

The 75 “most promising research leaders” recognised today by UKRI will benefit from £101 million to tackle major global issues and to commercialise their innovations in the UK.

UKRI Chief Executive, Professor Dame Ottoline Leyser, said: “UKRI’s Future Leaders Fellowships provide researchers and innovators with long-term support and training, giving them the freedom to explore adventurous new ideas, and to build dynamic careers that break down the boundaries between sectors and disciplines.

“The fellows announced today illustrate how this scheme empowers talented researchers and innovators to build the diverse and connected research and innovation system we need to shorten the distance between discovery and prosperity across the UK.”

The four Cambridge researchers are:

Dr Alecia-Jane Twigger (Department of Pharmacology) (pictured)

Breastfeeding has been highlighted by the World Health Organization (WHO) as “one of the most effective ways to ensure child health and survival”. A major priority of the WHO is to increase the global rate of exclusive breastfeeding for the first 6 months up to at least 50% by 2025. However, many mothers worry about low milk production – a major driver for mothers switching to formula feeding. With funding provided by the Future Leaders Fellowship, Dr Twigger will establish state-of-the-art models of lactation with the aim of developing and trialling treatments to support low-milk production mothers in partnership with breastfeeding advocates and clinical stakeholders.

Dr Amy Orben (MRC Cognition and Brain Sciences Unit and Fellow of St John’s College)

Dr Amy Orben will pinpoint how social media use might be linked to mental health risk in teenagers, a time when we are especially susceptible to developing mental health conditions. She will use a range of innovative techniques to study technological designs, such as the quantification of social feedback through ‘like’ counts, that could be problematic and therefore a target for future regulation. As a UKRI Future Leader Fellow, Dr Orben will also collaborate flexibly with youth, policymakers and charities to swiftly address pressing questions about social media and technology, helping to safeguard young people.

Dr Anna Moore (Department of Psychiatry)

Seventy percent of children suffering mental health problems are unable to access services and those who can are waiting longer than ever for help. Working with children, families and Cambridge Children’s Hospital project, Dr Anna Moore is developing easy-to-use digital tools to revolutionise mental health treatment for the young, by helping clinicians diagnose conditions much earlier. The system, called Timely, will use AI to analyse patient data, joining the dots to spot the early signs of mental health conditions. The tool will be designed to reduce health inequality, improve service efficiency and ensure data use is ethical and publicly acceptable.

Dr Niamh Gallagher (Faculty of History and Fellow of St Catharine’s College)

Dr Gallagher will lead ground-breaking historical research into one of the greatest geopolitical transformations of the 20th century, the disappearance of the British Empire, by investigating how Ireland, the Irish and a series of so-called ‘Irish Questions’ influenced the multifarious ‘ends’ of the Empire, from 1886 to today. With partners spanning education, public policy and the media, this research will produce a series of innovative outputs and shareable recommendations that facilitate pathways to cohesion in post-conflict Northern Ireland and enhance British–Irish relations in the aftermath of Brexit.



The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified.  All rights reserved. We make our image and video content available in a number of ways – as here, on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Why reading nursery rhymes and singing to babies may help them to learn language

Babies wearing 'head cap' to measure electrical brain activity

source: www.cam.ac.uk

Researchers find that babies don’t begin to process phonetic information reliably until seven months old which they say is too late to form the foundation of language.

This is the first evidence we have of how brain activity relates to phonetic information changes over time in response to continuous speech.Professor Giovanni Di Liberto

Parents should speak to their babies using sing-song speech, like nursery rhymes, as soon as possible, say researchers. That’s because babies learn languages from rhythmic information, not phonetic information, in their first months.

Phonetic information – the smallest sound elements of speech, typically represented by the alphabet – is considered by many linguists to be the foundation of language. Infants are thought to learn these small sound elements and add them together to make words. But a new study suggests that phonetic information is learnt too late and slowly for this to be the case.

Instead, rhythmic speech helps babies learn language by emphasising the boundaries of individual words and is effective even in the first months of life.

Researchers from the University of Cambridge and Trinity College Dublin investigated babies’ ability to process phonetic information during their first year.

Their study, published today in the journal Nature Communications, found that phonetic information wasn’t successfully encoded until seven months old, and was still sparse at 11 months old when babies began to say their first words.

“Our research shows that the individual sounds of speech are not processed reliably until around seven months, even though most infants can recognise familiar words like ‘bottle’ by this point,” said Cambridge neuroscientist, Professor Usha Goswami. “From then individual speech sounds are still added in very slowly – too slowly to form the basis of language.”

The researchers recorded patterns of electrical brain activity in 50 infants at four, seven and eleven months old as they watched a video of a primary school teacher singing 18 nursery rhymes to an infant. Low frequency bands of brainwaves were fed through a special algorithm, which produced a ‘read out’ of the phonological information that was being encoded.  

The researchers found that phonetic encoding in babies emerged gradually over the first year of life, beginning with labial sounds (e.g. b for “baby”) and nasal sounds (e.g. m for “mummy”), with the ‘read out’ progressively looking more like that of adults

First author, Professor Giovanni Di Liberto, a cognitive and computer scientist at Trinity College Dublin and a researcher at the ADAPT Centre, said: “This is the first evidence we have of how brain activity relates to phonetic information changes over time in response to continuous speech.”

Previously, studies have relied on comparing the responses to nonsense syllables, like “bif” and “bof” instead.

The current study forms part of the BabyRhythm project led by Goswami, which is investigating how language is learnt and how this is related to dyslexia and developmental language disorder. 

Goswami believes that it is rhythmic information – the stress or emphasis on different syllables of words and the rise and fall of tone – that is the key to language learning. A sister study, also part of the BabyRhythm project, has shown that rhythmic speech information was processed by babies at two months old – and individual differences predicted later language outcomes. The experiment was also conducted with adults who showed an identical ‘read out’ of rhythm and syllables to babies.

“We believe that speech rhythm information is the hidden glue underpinning the development of a well-functioning language system,” said Goswami. “Infants can use rhythmic information like a scaffold or skeleton to add phonetic information on to. For example, they might learn that the rhythm pattern of English words is typically strong-weak, as in ‘daddy’ or ‘mummy’, with the stress on the first syllable. They can use this rhythm pattern to guess where one word ends and another begins when listening to natural speech.”

“Parents should talk and sing to their babies as much as possible or use infant directed speech like nursery rhymes because it will make a difference to language outcome,” she added.

Goswami explained that rhythm is a universal aspect of every language all over the world. “In all language that babies are exposed to there is a strong beat structure with a strong syllable twice a second. We’re biologically programmed to emphasise this when speaking to babies.”

Goswami says that there is a long history in trying to explain dyslexia and developmental language disorder in terms of phonetic problems but that the evidence doesn’t add up. She believes that individual differences in children’s language originate with rhythm. 

The research was funded by the European Research Council under the European Union’s Horizon 2020 research and innovation programme and by Science Foundation Ireland. 

Di Liberto et al. Emergence of the cortical encoding of phonetic features in the first year of life, Nature Communications DOI: 10.1038/s41467-023-43490-x



The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified.  All rights reserved. We make our image and video content available in a number of ways – as here, on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Newborn babies at risk from bacteria commonly carried by mothers

Pregnant woman holding her stomach

source: www,cam.ac.uk

One in 200 newborns is admitted to a neonatal unit with sepsis caused by a bacteria commonly carried by their mothers – much greater than the previous estimate, say Cambridge researchers. The team has developed an ultra-sensitive test capable of better detecting the bacteria, as it is missed in the vast majority of cases.

In the UK, we’ve traditionally not screened mothers for GBS, but our findingsprofoundly changes the risk/benefit balance of universal screeningFrancesca Gaccioli

Streptococcus agalactiae (known as Group B Streptococcus, or GBS) is present in the genital tract in around one in five women. Previous research by the team at the University of Cambridge and Rosie Hospital, Cambridge University Hospitals NHS Foundation Trust, identified GBS in the placenta of around 5% of women prior to the onset of labour. Although it can be treated with antibiotics, unless screened, women will not know they are carriers.

GBS can cause sepsis, a life-threatening reaction to an infection, in the newborn. Worldwide, GBS accounts for around 50,000 stillbirths and as many as 100,000 infant deaths per year.

In a study published today in Nature Microbiology, the team looked at the link between the presence of GBS in the placenta and the risk of admission of the baby to a neonatal unit. The researchers re-analysed data available from their previous study of 436 infants born at term, confirming their findings in a second cohort of 925 pregnancies.

From their analysis, the researchers estimate that placental GBS was associated with a two- to three-fold increased risk of neonatal unit admission, with one in 200 babies admitted with sepsis associated with GBS – almost 10 times the previous estimate. The clinical assessment of these babies using the current diagnostic testing identified GBS in less than one in five of these cases.

In the USA, all pregnant women are routinely screened for GBS and treated with antibiotics if found to be positive. In the UK, women who test positive for GBS are also treated with antibiotics – however, only a minority of pregnant women are tested for GBS, as the approach in the UK is to obtain samples only from women experiencing complications, or with other risk factors.

There are a number of reasons why women in the UK are not screened, including the fact that detecting GBS in the mother is not always straightforward and only a small minority of babies exposed to the bacteria were thought to become ill. A randomised controlled trial of screening for GBS for treatment with antibiotics is currently underway in the UK.

Dr Francesca Gaccioli from the Department of Obstetrics & Gynaecology at the University of Cambridge said: “In the UK, we’ve traditionally not screened mothers for GBS, but our findings – that significantly more newborns are admitted to the neonatal unit as a result of GBS-related sepsis than was previously thought – profoundly changes the risk/benefit balance of universal screening.”

To improve detection, the researchers have developed an ultrasensitive PCR test, which amplifies tiny amounts of DNA or RNA from a suspected sample to check for the presence of GBS. They have filed a patent with Cambridge Enterprise, the University of Cambridge’s technology transfer arm, for this test.

Professor Gordon Smith, Head of Obstetrics & Gynaecology at the University of Cambridge, said: “Using this new test, we now realise that the clinically detected cases of GBS may represent the tip of the iceberg of complications arising from this infection. We hope that the ultra-sensitive test developed by our team might lead to viable point-of-care testing to inform immediate neonatal care.”

When the researchers analysed serum from the babies’ umbilical cords, they found that over a third showed greatly increased levels of several cytokines – protein messengers release by the immune system. This suggests that a so-called ‘cytokine storm’ – an extreme immune response that causes collateral damage to the host – was behind the increased risk of disease.

The research was funded by the Medical Research Council and supported by the National Institute for Health and Care Research (NIHR) Cambridge Biomedical Research Centre.

Reference
Gaccioli, F, Stephens, K & Sovio, U et al. Placental Streptococcus agalactiae DNA is associated with neonatal unit admission and fetal pro-inflammatory cytokines in term infants. Nature Microbiology; 29 Nov 2023; DOI: 10.1038/s41564-023-01528-2



The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified.  All rights reserved. We make our image and video content available in a number of ways – as here, on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Early-stage stem cell therapy trial shows promise for treating progressive MS

Early-stage stem cell therapy trial shows promise for treating progressive MS

https://www.youtube-nocookie.com/embed/nJPNlSYR2LA?wmode=opaque&controls=1&rel=0&autohide=0&enablejsapi=1&origin=https%3A%2F%2Fwww.cam.ac.uk

source: www.cam.ac.uk

An international team has shown that the injection of a type of stem cell into the brains of patients living with progressive multiple sclerosis (MS) is safe, well tolerated and has a long-lasting effect that appears to protect the brain from further damage.

I am cautiously very excited about our findings, which are a step towards developing a cell therapy for treating MSStefano Pluchino

The study, led by scientists at the University of Cambridge, University of Milan Bicocca and Hospital Casa Sollievo della Sofferenza (Italy), is a step towards developing an advanced cell therapy treatment for progressive MS.

Over 2 million people live with MS worldwide, and while treatments exist that can reduce the severity and frequency of relapses, two-thirds of MS patients still transition into a debilitating secondary progressive phase of disease within 25-30 years of diagnosis, where disability grows steadily worse.

In MS, the body’s own immune system attacks and damages myelin, the protective sheath around nerve fibres, causing disruption to messages sent around the brain and spinal cord.

Key immune cells involved in this process are macrophages (literally ‘big eaters’), which ordinarily attack and rid the body of unwanted intruders. A particular type of macrophage known as a microglial cell is found throughout the brain and spinal cord. In progressive forms of MS, they attack the central nervous system (CNS), causing chronic inflammation and damage to nerve cells.

Recent advances have raised expectations that stem cell therapies might help ameliorate this damage. These involve the transplantation of stem cells, the body’s ‘master cells’, which can be programmed to develop into almost any type of cell within the body.

Previous work from the Cambridge team has shown in mice that skin cells re-programmed into brain stem cells, transplanted into the central nervous system, can help reduce inflammation and may be able to help repair damage caused by MS.

Now, in research published in the Cell Stem Cell, scientists have completed a first-in-human, early-stage clinical trial that involved injecting neural stem cells directly into the brains of 15 patients with secondary MS recruited from two hospitals in Italy. The trial was conducted by teams at the University of Cambridge, Milan Bicocca and the Hospitals Casa Sollievo della Sofferenza and S. Maria Terni  (IT) and Ente Ospedaliero Cantonale (Lugano, Switzerland) and the University of Colorado (USA).

The stem cells were derived from cells taken from brain tissue from a single, miscarried foetal donor. The Italian team had previously shown that it would be possible to produce a virtually limitless supply of these stem cells from a single donor – and in future it may be possible to derive these cells directly from the patient – helping to overcome practical problems associated with the use of allogeneic foetal tissue.

The team followed the patients over 12 months, during which time they observed no treatment-related deaths or serious adverse events. While some side-effects were observed, all were either temporary or reversible.

All the patients showed high levels of disability at the start of the trial – most required a wheelchair, for example – but during the 12 month follow up period none showed any increase in disability or a worsening of symptoms. None of the patients reported symptoms that suggested a relapse and nor did their cognitive function worsen significantly during the study. Overall, say the researchers, this points to a substantial stability of the disease, without signs of progression, though the high levels of disability at the start of the trial make this difficult to confirm.

The researchers assessed a subgroup of patients for changes in the volume of brain tissue associated with disease progression. They found that the larger the dose of injected stem cells, the smaller the reduction in this brain volume over time. They speculate that this may be because the stem cell transplant dampened inflammation.

The team also looked for signs that the stem cells were having a neuroprotective effect – that is, protecting nerve cells from further damage. Their previous work showed how tweaking metabolism – how the body produces energy – can in turn reprogram microglia from ‘bad’ to ‘good’. In this new study, they looked at how the brain’s metabolism changes after the treatment. They measured changes in the fluid around the brain and in the blood over time and found certain signs that are linked to how the brain processes fatty acids. These signs were connected to how well the treatment works and how the disease develops. The higher the dose of stem cells, the greater the levels of fatty acids, which also persisted over the 12-month period.

Professor Stefano Pluchino from the University of Cambridge, who co-led the study, said: “We desperately need to develop new treatments for secondary progressive MS, and I am cautiously very excited about our findings, which are a step towards developing a cell therapy for treating MS.

“We recognise that our study has limitations – it was only a small study and there may have been confounding effects from the immunosuppressant drugs, for example – but the fact that our treatment was safe and that its effects lasted over the 12 months of the trial means that we can proceed to the next stage of clinical trials.”

Co-leader Professor Angelo Vescovi from the University of Milano-Bicocca said: “It has taken nearly three decades to translate the discovery of brain stem cells into this experimental therapeutic treatment This study will add to the increasing excitement in this field and pave the way to broader efficacy studies, soon to come.”

Caitlin Astbury, Research Communications Manager at the MS Society, says: “This is a really exciting study which builds on previous research funded by us. These results show that special stem cells injected into the brain were safe and well-tolerated by people with secondary progressive MS. They also suggest this treatment approach might even stabilise disability progression. We’ve known for some time that this method has the potential to help protect the brain from progression in MS.

“This was a very small, early-stage study and we need further clinical trials to find out if this treatment has a beneficial effect on the condition. But this is an encouraging step towards a new way of treating some people with MS.” 

Reference
Leone, MA, Gelati, M & Profico, DC et al. Intracerebroventricular Transplantation of Foetal Allogeneic Neural Stem Cells in Patients with Secondary Progressive Multiple Sclerosis (hNSC-SPMS): a phase I dose escalation clinical trial. Cell Stem Cell; 27 Nov 2023; DOI: 10.1016/j.stem.2023.11.001



The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified.  All rights reserved. We make our image and video content available in a number of ways – as here, on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

AI system self-organises to develop features of brains of complex organisms

Graphic representing an artificially intelligent brain

source: www.cam.ac.uk

Cambridge scientists have shown that placing physical constraints on an artificially-intelligent system – in much the same way that the human brain has to develop and operate within physical and biological constraints – allows it to develop features of the brains of complex organisms in order to solve tasks.

Not only is the brain great at solving complex problems, it does so while using very little energyJascha Achterberg

As neural systems such as the brain organise themselves and make connections, they have to balance competing demands. For example, energy and resources are needed to grow and sustain the network in physical space, while at the same time optimising the network for information processing. This trade-off shapes all brains within and across species, which may help explain why many brains converge on similar organisational solutions.

Jascha Achterberg, a Gates Scholar from the Medical Research Council Cognition and Brain Sciences Unit (MRC CBSU) at the University of Cambridge said: “Not only is the brain great at solving complex problems, it does so while using very little energy. In our new work we show that considering the brain’s problem solving abilities alongside its goal of spending as few resources as possible can help us understand why brains look like they do.”

Co-lead author Dr Danyal Akarca, also from the MRC CBSU, added: “This stems from a broad principle, which is that biological systems commonly evolve to make the most of what energetic resources they have available to them. The solutions they come to are often very elegant and reflect the trade-offs between various forces imposed on them.”

In a study published today in Nature Machine Intelligence, Achterberg, Akarca and colleagues created an artificial system intended to model a very simplified version of the brain and applied physical constraints. They found that their system went on to develop certain key characteristics and tactics similar to those found in human brains.

Instead of real neurons, the system used computational nodes. Neurons and nodes are similar in function, in that each takes an input, transforms it, and produces an output, and a single node or neuron might connect to multiple others, all inputting information to be computed.

In their system, however, the researchers applied a ‘physical’ constraint on the system. Each node was given a specific location in a virtual space, and the further away two nodes were, the more difficult it was for them to communicate. This is similar to how neurons in the human brain are organised.

The researchers gave the system a simple task to complete – in this case a simplified version of a maze navigation task typically given to animals such as rats and macaques when studying the brain, where it has to combine multiple pieces of information to decide on the shortest route to get to the end point.

One of the reasons the team chose this particular task is because to complete it, the system needs to maintain a number of elements – start location, end location and intermediate steps – and once it has learned to do the task reliably, it is possible to observe, at different moments in a trial, which nodes are important. For example, one particular cluster of nodes may encode the finish locations, while others encode the available routes, and it is possible to track which nodes are active at different stages of the task.

Initially, the system does not know how to complete the task and makes mistakes. But when it is given feedback it gradually learns to get better at the task. It learns by changing the strength of the connections between its nodes, similar to how the strength of connections between brain cells changes as we learn. The system then repeats the task over and over again, until eventually it learns to perform it correctly.

With their system, however, the physical constraint meant that the further away two nodes were, the more difficult it was to build a connection between the two nodes in response to the feedback. In the human brain, connections that span a large physical distance are expensive to form and maintain.

When the system was asked to perform the task under these constraints, it used some of the same tricks used by real human brains to solve the task. For example, to get around the constraints, the artificial systems started to develop hubs – highly connected nodes that act as conduits for passing information across the network.

More surprising, however, was that the response profiles of individual nodes themselves began to change: in other words, rather than having a system where each node codes for one particular property of the maze task, like the goal location or the next choice, nodes developed a flexible coding scheme. This means that at different moments in time nodes might be firing for a mix of the properties of the maze. For instance, the same node might be able to encode multiple locations of a maze, rather than needing specialised nodes for encoding specific locations. This is another feature seen in the brains of complex organisms.

Co-author Professor Duncan Astle, from Cambridge’s Department of Psychiatry, said: “This simple constraint – it’s harder to wire nodes that are far apart – forces artificial systems to produce some quite complicated characteristics. Interestingly, they are characteristics shared by biological systems like the human brain. I think that tells us something fundamental about why our brains are organised the way they are.”

Understanding the human brain

The team are hopeful that their AI system could begin to shed light on how these constraints, shape differences between people’s brains, and contribute to differences seen in those that experience cognitive or mental health difficulties.

Co-author Professor John Duncan from the MRC CBSU said: “These artificial brains give us a way to understand the rich and bewildering data we see when the activity of real neurons is recorded in real brains.”

Achterberg added: “Artificial ‘brains’ allow us to ask questions that it would be impossible to look at in an actual biological system. We can train the system to perform tasks and then play around experimentally with the constraints we impose, to see if it begins to look more like the brains of particular individuals.”

Implications for designing future AI systems

The findings are likely to be of interest to the AI community, too, where they could allow for the development of more efficient systems, particularly in situations where there are likely to be physical constraints.

Dr Akarca said: “AI researchers are constantly trying to work out how to make complex, neural systems that can encode and perform in a flexible way that is efficient. To achieve this, we think that neurobiology will give us a lot of inspiration. For example, the overall wiring cost of the system we’ve created is much lower than you would find in a typical AI system.”

Many modern AI solutions involve using architectures that only superficially resemble a brain. The researchers say their works shows that the type of problem the AI is solving will influence which architecture is the most powerful to use.

Achterberg said: “If you want to build an artificially-intelligent system that solves similar problems to humans, then ultimately the system will end up looking much closer to an actual brain than systems running on large compute cluster that specialise in very different tasks to those carried out by humans. The architecture and structure we see in our artificial ‘brain’ is there because it is beneficial for handling the specific brain-like challenges it faces.”

This means that robots that have to process a large amount of constantly changing information with finite energetic resources could benefit from having brain structures not dissimilar to ours.

Achterberg added: “Brains of robots that are deployed in the real physical world are probably going to look more like our brains because they might face the same challenges as us. They need to constantly process new information coming in through their sensors while controlling their bodies to move through space towards a goal. Many systems will need to run all their computations with a limited supply of electric energy and so, to balance these energetic constraints with the amount of information it needs to process, it will probably need a brain structure similar to ours.”

The research was funded by the Medical Research Council, Gates Cambridge, the James S McDonnell Foundation, Templeton World Charity Foundation and Google DeepMind.

Reference
Achterberg, J & Akarca, D et al. Spatially embedded recurrent neural networks reveal widespread links between structural and functional neuroscience findings. Nature Machine Intelligence; 20 Nov 2023; DOI: 10.1038/s42256-023-00748-9



The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified.  All rights reserved. We make our image and video content available in a number of ways – as here, on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.