All posts by Admin

Earth’s earliest sea creatures drove evolution by stirring the water

Artistic recreation of the marine animal forest

source: www.cam.ac.uk

3D reconstructions suggest that simple marine animals living over 560 million years ago drove the emergence of more complex life by mixing the seawater around them

It’s exciting to learn that the very first animals from 580 million years ago had a significant impact on their environment, despite not being able to move or swim.Emily Mitchell

A study involving the University of Cambridge has used virtual recreations of the earliest animal ecosystems, known as marine animal forests, to demonstrate the part they played in the evolution of our planet.

Using state-of-the-art computer simulations of fossils from the Ediacaran time period – approximately 565 million years ago – scientists discovered how these animals mixed the surrounding seawater. This may have affected the distribution of important resources such as food particles and could have increased local oxygen levels.

Through this process, the scientists think these early communities could have played a crucial role in shaping the initial emergence of large and complex organisms prior to a major evolutionary radiation of different forms of animal life, the so-called Cambrian ‘explosion’.

Over long periods of time, these changes might have allowed life forms to perform more complicated functions, like those associated with the evolution of new feeding and movement styles.

The study was led by the Natural History Museum and is published today in the journal Current Biology.

Dr Emily Mitchell at the University of Cambridge’s Department of Zoology, a co-author of the report, said: “It’s exciting to learn that the very first animals from 580 million years ago had a significant impact on their environment, despite not being able to move or swim. We’ve found they mixed up the water and enabled resources to spread more widely – potentially encouraging more evolution.”

Scientists know from modern marine environments that nutrients like food and oxygen are carried in seawater, and that animals can affect water flow in ways that influence the distribution of these resources.

To test how far back this process goes in Earth’s history, the team looked at some of the earliest examples of marine animal communities, known from rocks at Mistaken Point, Newfoundland, Canada. This world-famous fossil site perfectly preserves early life forms thanks to a cover of volcanic ash (sometimes referred to as an ‘Ediacaran Pompeii’).

Although some of these life forms look like plants, analysis of their anatomy and growth strongly suggests they are animals. Owing to the exceptional preservation of the fossils, the scientists could recreate digital models of key species, which were used as a basis for further computational analyses.

First author Dr Susana Gutarra, a Scientific Associate at the Natural History Museum, said: “We used ecological modelling and computer simulations to investigate how 3D virtual assemblages of Ediacaran life forms affected water flow. Our results showed that these communities were capable of ecological functions similar to those seen in present-day marine ecosystems.”

The study showed that one of the most important Ediacaran organisms for disrupting the flow of water was the cabbage-shaped animal Bradgatia, named after Bradgate Park in England. The Bradgatia from Mistaken Point are among some of the largest fossils known from this site, reaching diameters of over 50 centimetres.

Through their influence on the water around them, the scientists believe these Ediacaran organisms might have been capable of enhancing local oxygen concentrations. This biological mixing might also have had repercussions for the wider environment, possibly making other areas of the sea floor more habitable and perhaps even driving evolutionary innovation.

Dr Imran Rahman, lead author and Principal Researcher at the Natural History Museum, said: “The approach we’ve developed to study Ediacaran fossil communities is entirely new in palaeontology, providing us with a powerful tool for studying how past and present marine ecosystems might shape and influence their environment.”

The research was funded by the UK Natural Environment Research Council and the US National Science Foundation.

Reference: Gutarra-Diaz, S.“Ediacaran marine animal forests and the ventilation of the oceans.” May 2024, Current Biology. DOI: 10.1016/j.cub.2024.04.059

Adapted from a press release by the Natural History Museum



The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.


Read this next

Webb detects most distant black hole merger to date

The environment of the galaxy system ZS7 from the JWST PRIMER programme as seen by Webb's NIRCam instrument.

source: www.cam.ac.uk

An international team of astronomers, led by the University of Cambridge, has used the James Webb Space Telescope to find evidence for an ongoing merger of two galaxies and their massive black holes when the Universe was only 740 million years old. This marks the most distant detection of a black hole merger ever obtained and the first time that this phenomenon has been detected so early in the Universe.

Massive black holes have been shaping the evolution of galaxies from the very beginningHannah Übler

Astronomers have found supermassive black holes with masses of millions to billions times that of the Sun in most massive galaxies in the local Universe, including in our Milky Way galaxy. These black holes have likely had a major impact on the evolution of the galaxies they reside in. However, scientists still don’t fully understand how these objects grew to become so massive.

The finding of gargantuan black holes already in place in the first billion years after the Big Bang indicates that such growth must have happened very rapidly, and very early. Now, the James Webb Space Telescope is shedding new light on the growth of black holes in the early Universe.

The new Webb observations have provided evidence for an ongoing merger of two galaxies and their massive black holes when the Universe was just 740 million years old. The system is known as ZS7.

Massive black holes that are actively accreting matter have distinctive spectrographic features that allow astronomers to identify them. For very distant galaxies, like those in this study, these signatures are inaccessible from the ground and can only be seen with Webb.

“We found evidence for very dense gas with fast motions in the vicinity of the black hole, as well as hot and highly ionised gas illuminated by the energetic radiation typically produced by black holes in their accretion episodes,” said lead author Dr Hannah Übler of Cambridge’s Cavendish Laboratory and Kavli Institute for Cosmology. “Thanks to the unprecedented sharpness of its imaging capabilities, Webb also allowed our team to spatially separate the two black holes.”

The team found that one of the two black holes has a mass that is 50 million times the mass of the Sun. “The mass of the other black hole is likely similar, although it is much harder to measure because this second black hole is buried in dense gas,” said team member Professor Roberto Maiolino, also from the Kavli Institute.

“Our findings suggest that merging is an important route through which black holes can rapidly grow, even at cosmic dawn,” said Übler. “Together with other Webb findings of active, massive black holes in the distant Universe, our results also show that massive black holes have been shaping the evolution of galaxies from the very beginning.”

The team notes that once the two black holes merge, they will also generate gravitational waves. Events like this will be detectable with the next generation of gravitational wave observatories, such as the upcoming Laser Interferometer Space Antenna (LISA) mission, which was recently approved by the European Space Agency and will be the first space-based observatory dedicated to studying gravitational waves.

This discovery was from observations made as part of the Galaxy Assembly with NIRSpec Integral Field Spectroscopy programme. The team has recently been awarded a new Large Programme in Webb’s Cycle 3 of observations, to study in detail the relationship between massive black holes and their host galaxies in the first billion years. An important component of this programme will be to systematically search for and characterise black hole mergers. This effort will determine the rate at which black hole merging occurs at early cosmic epochs and will assess the role of merging in the early growth of black holes and the rate at which gravitational waves are produced from the dawn of time.

These results have been published in the Monthly Notices of the Royal Astronomical Society.

Reference:
Hannah Übler et al. ‘GA-NIFS: JWST discovers an offset AGN 740 million years after the big bang’ Monthly Notices of the Royal Astronomical Society (2024). DOI: 10.1093/mnras/stae943

Adapted from a press release by the European Space Agency.



The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Ten Cambridge scientists elected as Fellows of the Royal Society 2024

The Royal Society in central London

source: www.cam.ac.uk

Ten outstanding Cambridge researchers have been elected as Fellows of the Royal Society, the UK’s national academy of sciences and the oldest science academy in continuous existence.

The Royal Society is a self-governing Fellowship of many of the world’s most distinguished scientists drawn from all areas of science, engineering and medicine.

The Society’s fundamental purpose, as it has been since its foundation in 1660, is to recognise, promote and support excellence in science and to encourage the development and use of science for the benefit of humanity.

This year, over 90 researchers, innovators and communicators from around the world have been elected as Fellows of the Royal Society for their substantial contribution to the advancement of science. Nine of these are from the University of Cambridge.

Sir Adrian Smith, President of the Royal Society said: “I am pleased to welcome such an outstanding group into the Fellowship of the Royal Society.

“This new cohort have already made significant contributions to our understanding of the world around us and continue to push the boundaries of possibility in academic research and industry.

“From visualising the sharp rise in global temperatures since the industrial revolution to leading the response to the Covid-19 pandemic, their diverse range of expertise is furthering human understanding and helping to address some of our greatest challenges. It is an honour to have them join the Fellowship.”

The Fellows and Foreign Members join the ranks of Stephen Hawking, Isaac Newton, Charles Darwin, Albert Einstein, Lise Meitner, Subrahmanyan Chandrasekhar and Dorothy Hodgkin.

The new Cambridge fellows are: 
 

Professor Sir John Aston Kt FRS

Aston is the Harding Professor of Statistics in Public Life at the Statistical Laboratory, Department of Pure Mathematics and Mathematical Statistics, where he develops techniques for public policy and improves the use of quantitative methods in public policy debates.

From 2017 to 2020 he was the Chief Scientific Adviser to the Home Office, providing statistical and scientific advice to ministers and officials, and was involved in the UK’s response to the Covid pandemic. He was knighted in 2021 for services to statistics and public policymaking, and is a Fellow of Churchill College.
 

Professor Sarah-Jayne Blakemore FBA FMedSci FRS

Blakemore is the Professor of Psychology and Cognitive Neuroscience, Department of Psychology, and leader of the Developmental Cognitive Neuroscience Group. Her research focuses on the development of social cognition and decision making in the human adolescent brain, and adolescent mental health. 

Blakemore has been awarded several national and international prizes for her research, and is a Fellow of the British Academy, the American Association of Psychological Science and the Academy of Medical Sciences. 
 

Professor Patrick Chinnery FMedSci FRS

Chinnery is Professor of Neurology and head of the University’s Department of Clinical Neurosciences, and a Fellow of Gonville & Caius College. He was appointed Executive Chair of the Medical Research Council last year, having previously been MRC Clinical Director since 2019.

His principal research is the role of mitochondria in human disease and developing new treatments for mitochondrial disorders. Chinnery is a Wellcome Principal Research Fellow with a lab based in the MRC Mitochondrial Biology Unit and jointly chairs the NIHR BioResource for Translational Research in Common and Rare Diseases. He is a Fellow of the Academy of Medical Sciences.


Professor Rebecca Fitzgerald OBE FMedSci FRS

Fitzgerald is Professor of Cancer Prevention in the Department of Oncology and the inaugural Director of the University’s new Early Cancer Institute, which launched in 2022. She is a Fellow of Trinity College.

Her pioneering work to devise a first-in-class, non-endoscopic capsule sponge test for identifying individuals at high risk for oesophageal cancer has won numerous prizes, including the Westminster Medal, and this test is now being rolled out in the NHS and beyond by her spin-out Cyted Ltd.


Professor David Hodell FRS

Hodell is the Woodwardian Professor of Geology and Director of the Godwin Laboratory for Palaeoclimate Research in the Department of Earth Sciences, and a Fellow of Clare College.

A marine geologist and paleoclimatologist, his research focuses on high-resolution paleoclimate records from marine and lake sediments, as well as mineral deposits, to better understand past climate dynamics. Hodell is a fellow of the American Geophysical Union and the American Association for the Advancement of Science. He has received the Milutin Milankovic Medal.


Professor Eric Lauga FRS

Lauga is Professor of Applied Mathematics in the Department of Applied Mathematics and Theoretical Physics, where his research is in fluid mechanics, biophysics and soft matter. Lauga is the author, or co-author, of over 180 publications and currently serves as Associate Editor for the journal Physical Review Fluids.

He is a recipient of three awards from the American Physical Society: the Andreas Acrivos Dissertation Award in Fluid Dynamics, the François Frenkiel Award for Fluid Mechanics and the Early Career Award for Soft Matter Research. He is a Fellow of the American Physical Society and of Trinity College.


Professor George Malliaras FRS

Malliaras is the Prince Philip Professor of Technology in the Department of Engineering, where he leads a group that works on the development and translation of implantable and wearable devices that interface with electrically active tissues, with applications in neurological disorders and brain cancer.

Research conducted by Malliaras has received awards from the European Academy of Sciences, the New York Academy of Sciences, and the US National Science Foundation among others. He is a Fellow of the Materials Research Society and of the Royal Society of Chemistry.
 

Professor Lloyd Peck FRI FRSB FRS

Peck is a marine biologist at the British Antarctic Survey and a fellow at Wolfson College, Cambridge.

He identified oxygen as a factor in polar gigantism and identified problems with protein synthesis as the cause of slow development and growth in polar marine species. He was awareded a Polar Medal in 2009, the PLYMSEF Silver medal in 2015 and an Erskine Fellowship at the University of Canterbury, Christchurch in 2016-2017. 


Professor Oscar Randal-Williams FRS

Randal-Williams is the Sadleirian Professor of Pure Mathematics in the Department of Pure Mathematics and Mathematical Statistics.

He has received the Whitehead Prize from the London Mathematical Society, a Philip Leverhulme Prize, the Oberwolfach Prize, the Dannie Heineman Prize of the Göttingen Academy of Sciences and Humanities, and was jointly awarded the Clay Research Award.

Randal-Williams is one of two managing editors of the Proceedings of the London Mathematical Society, and an editor of the Journal of Topology.


Professor Mihaela van der Schaar FRS

Van der Schaar is the John Humphrey Plummer Professor of Machine Learning, Artificial Intelligence and Medicine in the Departments of Applied Mathematics and Theoretical Physics, Engineering and Medicine.

She is the founder and director of the Cambridge Centre for AI in Medicine, and a Fellow at The Alan Turing Institute. Her work has received numerous awards, including the Oon Prize on Preventative Medicine, a National Science Foundation CAREER Award, and the IEEE Darlington Award.

Van der Schaar is credited as inventor on 35 US patents, and has made over 45 contributions to international standards for which she received three ISO Awards. In 2019, a Nesta report declared her the most-cited female AI researcher in the UK.


 



The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Jack Lang (1966)

source: https://www.emma.cam.ac.uk/

The college is sad to announce that our Bye-Fellow Jack Lang died on Tuesday 23 April after a long illness.

Jack matriculated in 1966 and had been, at various times, our Director of Studies in Computer Science and in Management Studies. He was appointed a Bye-Fellow in 2003.

Jack was a serial entrepreneur and business angel. Interested in ‘computer science and how the brain works’, his undergraduate degree in Mechanical Sciences led to a Computer Science diploma and a spell as Demonstrator in the Computer Laboratory. He left the University to found, with Professor Shon Ffowcs-Williams, the consulting company TopExpress, one of whose projects was designing some of the software for the BBC Microcomputer.

Jack also founded Electronic Share Information Ltd, which was acquired by E*Trade Inc in 1995, and was a founder of Netchannel Ltd, which was acquired in 1998 by ntl, for whom he subsequently became Chief Technologist. He was also co-founder of Raspberry Pi in 2012, which achieved its aim of putting high-performance, low-cost, general-purpose computing platforms in the hands of enthusiasts and engineers all over the world. Over 60 million computers have been sold in the last decade and the Raspberry Pi Foundation enables young people to realise their full potential through the power of computing and digital technologies. Jack  was one of the most significant figures in computing education in the UK.

He was author of ‘The High Tech Entrepreneurs Handbook’ (2002) and taught courses in Business Studies, Entrepreneurship and Ecommerce for the University of Cambridge Computer Science Laboratory. He was Entrepreneur in Residence at the Centre for Entrepreneurial Learning at the Judge Business School.

Jack was a keen sourdough baker, a passionate cook and a caring owner of a very productive apple orchard. A side project was as founder (and sometime chef) of Midsummer House Restaurant, Cambridge’s only Michelin starred restaurant. And in keeping with his polymath nature, having mastered the art of designing and making fireworks at a relatively young age, he also became the architect of, and long-term champion for, the Cambridge fireworks display.

He will be much missed and long remembered by many around the world.

Robotic nerve ‘cuffs’ could help treat a range of neurological conditions

Illustration of the human nervous system

source: www.cam.ac.uk

Researchers have developed tiny, flexible devices that can wrap around individual nerve fibres without damaging them.

The ability to make an implant that can change shape through electrical activation opens up a range of future possibilities for highly targeted treatmentsGeorge Malliaras

The researchers, from the University of Cambridge, combined flexible electronics and soft robotics techniques to develop the devices, which could be used for the diagnosis and treatment of a range of disorders, including epilepsy and chronic pain, or the control of prosthetic limbs.

Current tools for interfacing with the peripheral nerves – the 43 pairs of motor and sensory nerves that connect the brain and the spinal cord – are outdated, bulky and carry a high risk of nerve injury. However, the robotic nerve ‘cuffs’ developed by the Cambridge team are sensitive enough to grasp or wrap around delicate nerve fibres without causing any damage.

Tests of the nerve cuffs in rats showed that the devices only require tiny voltages to change shape in a controlled way, forming a self-closing loop around nerves without the need for surgical sutures or glues.

The researchers say the combination of soft electrical actuators with neurotechnology could be an answer to minimally invasive monitoring and treatment for a range of neurological conditions. The results are reported in the journal Nature Materials.

Electric nerve implants can be used to either stimulate or block signals in target nerves. For example, they might help relieve pain by blocking pain signals, or they could be used to restore movement in paralysed limbs by sending electrical signals to the nerves. Nerve monitoring is also standard surgical procedure when operating in areas of the body containing a high concentration of nerve fibres, such as anywhere near the spinal cord.

These implants allow direct access to nerve fibres, but they come with certain risks. “Nerve implants come with a high risk of nerve injury,” said Professor George Malliaras from Cambridge’s Department of Engineering, who led the research. “Nerves are small and highly delicate, so anytime you put something large, like an electrode, in contact with them, it represents a danger to the nerves.”

“Nerve cuffs that wrap around nerves are the least invasive implants currently available, but despite this they are still too bulky, stiff and difficult to implant, requiring significant handling and potential trauma to the nerve,” said co-author Dr Damiano Barone from Cambridge’s Department of Clinical Neurosciences.

The researchers designed a new type of nerve cuff made from conducting polymers, normally used in soft robotics. The ultra-thin cuffs are engineered in two separate layers. Applying tiny amounts of electricity – just a few hundred millivolts – causes the devices to swell or shrink.

The cuffs are small enough that they could be rolled up into a needle and injected near the target nerve. When activated electrically, the cuffs will change their shape to wrap around the nerve, allowing nerve activity to be monitored or altered.

“To ensure the safe use of these devices inside the body, we have managed to reduce the voltage required for actuation to very low values,” said Dr Chaoqun Dong, the paper’s first author. “What’s even more significant is that these cuffs can change shape in both directions and be reprogrammed. This means surgeons can adjust how tightly the device fits around a nerve until they get the best results for recording and stimulating the nerve.”

Tests in rats showed that the cuffs could be successfully placed without surgery, and formed a self-closing loop around the target nerve. The researchers are planning further testing of the devices in animal models, and are hoping to begin testing in humans within the next few years.

“Using this approach, we can reach nerves that are difficult to reach through open surgery, such as the nerves that control, pain, vision or hearing, but without the need to implant anything inside the brain,” said Barone. “The ability to place these cuffs so they wrap around the nerves makes this a much easier procedure for surgeons, and it’s less risky for patients.”

“The ability to make an implant that can change shape through electrical activation opens up a range of future possibilities for highly targeted treatments,” said Malliaras. “In future, we might be able to have implants that can move through the body, or even into the brain – it makes you dream how we could use technology to benefit patients in future.”

The research was supported in part by the Swiss National Science Foundation, the Cambridge Trust, and the Engineering and Physical Sciences Research Council (EPSRC), part of UK Research and Innovation (UKRI).

Reference:
Chaoqun Dong et al. ‘Electrochemically actuated microelectrodes for minimally invasive peripheral nerve interfaces.’ Nature Materials (2024). DOI: 10.1038/s41563-024-01886-0



The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Training AI models to answer ‘what if?’ questions could improve medical treatments

Computer generated image of a human brain

source: www.cam.ac.uk

Machines can learn not only to make predictions, but to handle causal relationships. An international research team shows how this could make medical treatments safer, more efficient, and more personalised.

Artificial intelligence techniques can be helpful for multiple medical applications, such as radiology or oncology, where the ability to recognise patterns in large volumes of data is vital. For these types of applications, the AI compares information against learned examples, draws conclusions, and makes extrapolations.

Now, an international team led by researchers from Ludwig-Maximilians-Universität München (LMU) and including researchers from the University of Cambridge, is exploring the potential of a comparatively new branch of AI for diagnostics and therapy.

The researchers found that causal machine learning (ML) can estimate treatment outcomes – and do so better than the machine learning methods generally used to date. Causal machine learning makes it easier for clinicians to personalise treatment strategies, which individually improves the health of patients.

The results, reported in the journal Nature Medicine, suggest how causal machine learning could improve the effectiveness and safety of a variety of medical treatments.

Classical machine learning recognises patterns and discovers correlations. However, the principle of cause and effect remains closed to machines as a rule; they cannot address the question of why. When making therapy decisions for a patient, the ‘why’ is vital to achieve the best outcomes.

“Developing machine learning tools to address why and what if questions is empowering for clinicians, because it can strengthen their decision-making processes,” said senior author Professor Mihaela van der Schaar, Director of the Cambridge Centre for AI in Medicine. “But this sort of machine learning is far more complex than assessing personalised risk.”

For example, when attempting to determine therapy decisions for someone at risk of developing diabetes, classical ML would aim to predict how probable it is for a given patient with a range of risk factors to develop the disease. With causal ML, it would be possible to answer how the risk changes if the patient receives an anti-diabetes drug; that is, gauge the effect of a cause. It would also be possible to estimate whether metformin, the commonly-prescribed medication, would be the best treatment, or whether another treatment plan would be better.

To be able to estimate the effect of a hypothetical treatment, the AI models must learn to answer ‘what if?’ questions. “We give the machine rules for recognising the causal structure and correctly formalising the problem,” said Professor Stefan Feuerriegel from LMU, who led the research. “Then the machine has to learn to recognise the effects of interventions and understand, so to speak, how real-life consequences are mirrored in the data that has been fed into the computers.”

Even in situations for which reliable treatment standards do not yet exist or where randomised studies are not possible for ethical reasons because they always contain a placebo group, machines could still gauge potential treatment outcomes from the available patient data and form hypotheses for possible treatment plans, so the researchers hope.

With such real-world data, it should generally be possible to describe the patient cohorts with ever greater precision in the estimates, bringing individualised therapy decisions that much closer. Naturally, there would still be the challenge of ensuring the reliability and robustness of the methods.

“The software we need for causal ML methods in medicine doesn’t exist out of the box,” says Feuerriegel. “Rather, complex modelling of the respective problem is required, involving close collaboration between AI experts and doctors.”

In other fields, such as marketing, explains Feuerriegel, the work with causal ML has already been in the testing phase for some years now. “Our goal is to bring the methods a step closer to practice,” he said. The paper describes the direction in which things could move over the coming years.”

“I have worked in this area for almost 10 years, working relentlessly in our lab with generations of students to crack this problem,” said van der Schaar, who is affiliated with the Departments of Applied Mathematics and Theoretical Physics, Engineering and Medicine. “It’s an extremely challenging area of machine learning, and seeing it come closer to clinical use, where it will empower clinicians and patients alike, is very satisfying.”

Van der Schaar is continuing to work closely with clinicians to validate these tools in diverse clinical settings, including transplantation, cancer and cardiovascular disease.

Reference:
Stefan Feuerriegel et al. ‘Causal machine learning for predicting treatments.’ Nature Medicine (2024). DOI: 10.1038/s41591-024-02902-1

Adapted from an LMU media release.



The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Mess is best: disordered structure of battery-like devices improves performance

Left to right: Clare Grey, Xinyu Liu, Alex Forse

source: www.cam.ac.uk

The energy density of supercapacitors – battery-like devices that can charge in seconds or a few minutes – can be improved by increasing the ‘messiness’ of their internal structure.

This could be a turning point for a field that’s been stuck for a little while.Alex Forse

Researchers led by the University of Cambridge used experimental and computer modelling techniques to study the porous carbon electrodes used in supercapacitors. They found that electrodes with a more disordered chemical structure stored far more energy than electrodes with a highly ordered structure.

Supercapacitors are a key technology for the energy transition and could be useful for certain forms of public transport, as well as for managing intermittent solar and wind energy generation, but their adoption has been limited by poor energy density.

The researchers say their results, reported in the journal Science, represent a breakthrough in the field and could reinvigorate the development of this important net-zero technology.

Like batteries, supercapacitors store energy, but supercapacitors can charge in seconds or a few minutes, while batteries take much longer. Supercapacitors are far more durable than batteries, and can last for millions of charge cycles. However, the low energy density of supercapacitors makes them unsuitable for delivering long-term energy storage or continuous power.

“Supercapacitors are a complementary technology to batteries, rather than a replacement,” said Dr Alex Forse from Cambridge’s Yusuf Hamied Department of Chemistry, who led the research. “Their durability and extremely fast charging capabilities make them useful for a wide range of applications.”

A bus, train or metro powered by supercapacitors, for example, could fully charge in the time it takes to let passengers off and on, providing it with enough power to reach the next stop. This would eliminate the need to install any charging infrastructure along the line. However, before supercapacitors are put into widespread use, their energy storage capacity needs to be improved.

While a battery uses chemical reactions to store and release charge, a supercapacitor relies on the movement of charged molecules between porous carbon electrodes, which have a highly disordered structure. “Think of a sheet of graphene, which has a highly ordered chemical structure,” said Forse. “If you scrunch up that sheet of graphene into a ball, you have a disordered mess, which is sort of like the electrode in a supercapacitor.”

Because of the inherent messiness of the electrodes, it’s been difficult for scientists to study them and determine which parameters are the most important when attempting to improve performance. This lack of clear consensus has led to the field getting a bit stuck.

Many scientists have thought that the size of the tiny holes, or nanopores, in the carbon electrodes was the key to improved energy capacity. However, the Cambridge team analysed a series of commercially available nanoporous carbon electrodes and found there was no link between pore size and storage capacity.

Forse and his colleagues took a new approach and used nuclear magnetic resonance (NMR) spectroscopy – a sort of ‘MRI’ for batteries – to study the electrode materials. They found that the messiness of the materials – long thought to be a hindrance – was the key to their success.

“Using NMR spectroscopy, we found that energy storage capacity correlates with how disordered the materials are – the more disordered materials can store more energy,” said first author Xinyu Liu, a PhD candidate co-supervised by Forse and Professor Dame Clare Grey. “Messiness is hard to measure – it’s only possible thanks to new NMR and simulation techniques, which is why messiness is a characteristic that’s been overlooked in this field.”

When analysing the electrode materials with NMR spectroscopy, a spectrum with different peaks and valleys is produced. The position of the peak indicates how ordered or disordered the carbon is. “It wasn’t our plan to look for this, it was a big surprise,” said Forse. “When we plotted the position of the peak against energy capacity, a striking correlation came through – the most disordered materials had a capacity almost double that of the most ordered materials.”

So why is mess good? Forse says that’s the next thing the team is working on. More disordered carbons store ions more efficiently in their nanopores, and the team hope to use these results to design better supercapacitors. The messiness of the materials is determined at the point they are synthesised.

“We want to look at new ways of making these materials, to see how far messiness can take you in terms of improving energy storage,” said Forse. “It could be a turning point for a field that’s been stuck for a little while. Clare and I started working on this topic over a decade ago, and it’s exciting to see a lot of our previous fundamental work now having a clear application.”

The research was supported in part by the Cambridge Trusts, the European Research Council, and UK Research and Innovation (UKRI).

Reference:
Xinyu Liu et al. ‘Structural disorder determines capacitance in nanoporous carbons.’ Science (2024). DOI: 10.1126/science.adn6242

For more information on energy-related research in Cambridge, please visit the Energy IRC, which brings together Cambridge’s research knowledge and expertise, in collaboration with global partners, to create solutions for a sustainable and resilient energy landscape for generations to come. 



The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Artificial intelligence beats doctors in accurately assessing eye problems

close up of an eye

source: www.cam.ac.uk

A study has found that the AI model GPT-4 significantly exceeds the ability of non-specialist doctors to assess eye problems and provide advice.

We could realistically deploy AI in triaging patients with eye issues to decide which cases are emergencies.Arun Thirunavukarasu

The clinical knowledge and reasoning skills of GPT-4 are approaching the level of specialist eye doctors, a study led by the University of Cambridge has found.

GPT-4 – a ‘large language model’ – was tested against doctors at different stages in their careers, including unspecialised junior doctors, and trainee and expert eye doctors. Each was presented with a series of 87 patient scenarios involving a specific eye problem, and asked to give a diagnosis or advise on treatment by selecting from four options.

GPT-4 scored significantly better in the test than unspecialised junior doctors, who are comparable to general practitioners in their level of specialist eye knowledge.

GPT-4 gained similar scores to trainee and expert eye doctors – although the top performing doctors scored higher.

The researchers say that large language models aren’t likely to replace healthcare professionals, but have the potential to improve healthcare as part of the clinical workflow.

They say state-of-the-art large language models like GPT-4 could be useful for providing eye-related advice, diagnosis, and management suggestions in well-controlled contexts, like triaging patients, or where access to specialist healthcare professionals is limited.

“We could realistically deploy AI in triaging patients with eye issues to decide which cases are emergencies that need to be seen by a specialist immediately, which can be seen by a GP, and which don’t need treatment,” said Dr Arun Thirunavukarasu, lead author of the study, which he carried out while a student at the University of Cambridge’s School of Clinical Medicine.

He added: “The models could follow clear algorithms already in use, and we’ve found that GPT-4 is as good as expert clinicians at processing eye symptoms and signs to answer more complicated questions.

“With further development, large language models could also advise GPs who are struggling to get prompt advice from eye doctors. People in the UK are waiting longer than ever for eye care.

Large volumes of clinical text are needed to help fine-tune and develop these models, and work is ongoing around the world to facilitate this.

The researchers say that their study is superior to similar, previous studies because they compared the abilities of AI to practicing doctors, rather than to sets of examination results.

“Doctors aren’t revising for exams for their whole career. We wanted to see how AI fared when pitted against to the on-the-spot knowledge and abilities of practicing doctors, to provide a fair comparison,” said Thirunavukarasu, who is now an Academic Foundation Doctor at Oxford University Hospitals NHS Foundation Trust.

He added: “We also need to characterise the capabilities and limitations of commercially available models, as patients may already be using them – rather than the internet – for advice.”

The test included questions about a huge range of eye problems, including extreme light sensitivity, decreased vision, lesions, itchy and painful eyes, taken from a textbook used to test trainee eye doctors. This textbook is not freely available on the internet, making it unlikely that its content was included in GPT-4’s training datasets.

The results are published today in the journal PLOS Digital Health.

“Even taking the future use of AI into account, I think doctors will continue to be in charge of patient care. The most important thing is to empower patients to decide whether they want computer systems to be involved or not. That will be an individual decision for each patient to make,” said Thirunavukarasu.

GPT-4 and GPT-3.5 – or ‘Generative Pre-trained Transformers’ – are trained on datasets containing hundreds of billions of words from articles, books, and other internet sources. These are two examples of large language models; others in wide use include Pathways Language Model 2 (PaLM 2) and Large Language Model Meta AI 2 (LLaMA 2).

The study also tested GPT-3.5, PaLM2, and LLaMA with the same set of questions. GPT-4 gave more accurate responses than all of them.

GPT-4 powers the online chatbot ChatGPT to provide bespoke responses to human queries. In recent months, ChatGPT has attracted significant attention in medicine for attaining passing level performance in medical school examinations, and providing more accurate and empathetic messages than human doctors in response to patient queries.

The field of artificially intelligent large language models is moving very rapidly. Since the study was conducted, more advanced models have been released – which may be even closer to the level of expert eye doctors.

Reference: Thirunavukarasu, A J et al: ‘Large language models approach expert-level clinical knowledge and reasoning in ophthalmology: A head-to-head cross-sectional study.’ PLOS Digital Health, April 2024. DOI: 10.1371/journal.pdig.0000341



The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Steven Barrett appointed Regius Professor of Engineering

Steven Barrett

source: www.cam.ac.uk

An expert on the environmental impacts of aviation, Barrett joins the University of Cambridge from MIT.

It’s a pleasure to welcome Steven back to Cambridge to take up one of the University’s most prestigious rolesVice-Chancellor Professor Deborah Prentice

Professor Steven Barrett has been appointed Regius Professor of Engineering at the University of Cambridge, effective 1 June. He joins the University from the Massachusetts Institute of Technology (MIT), where he is head of the Department of Aeronautics and Astronautics (AeroAstro).

Barrett’s appointment marks his return to Cambridge, where he was an undergraduate at Pembroke College, and received his PhD. He was a Lecturer in the Department of Engineering from 2008 until 2010, when he joined the faculty at MIT.

The Regius Professorships are royal academic titles created by the monarch. The Regius Professorship in Engineering was announced in 2011, in honour of HRH Prince Philip, The Duke of Edinburgh’s 35 years as Chancellor of the University.

“It’s a pleasure to welcome Steven back to Cambridge to take up one of the University’s most prestigious roles,” said Vice-Chancellor Professor Deborah Prentice. “His work on sustainable aviation will build on Cambridge’s existing strengths, and will help us develop the solutions we need to address the threat posed by climate change.”

Barrett’s research focuses on the impact aviation has on the environment. He has developed a number of solutions to mitigate the impact aviation has on air quality, climate, and noise pollution. The overall goal of his research is to help develop technologies that eliminate the environmental impact of aviation. His work on the first-ever plane with no moving propulsion parts was named one of the 10 Breakthroughs of 2018 by Physics World.

“This is an exciting time to work on sustainable aviation, and Cambridge, as well as the UK more generally, is a wonderful platform to advance that,” said Barrett. “Cambridge’s multidisciplinary Department of Engineering, as well as the platform that the Regius Professorship provides, makes this a great opportunity. I’ve learned a lot at MIT, but I’d always hoped to come back to Cambridge at some point.”

Much of Barrett’s research focuses on the elimination of contrails, line-shaped clouds produced by aircraft engine exhaust in cold and humid conditions. Contrails cause half of all aviation-related global warming – more than the entirety of the UK economy. Barrett uses a combination of satellite observation and machine learning techniques to help determine whether avoiding certain regions of airspace could reduce or eliminate contrail formation.

“It will take several years to make this work, but if it does, it could drastically reduce emissions at a very low cost to the consumer,” said Barrett. “We could make the UK the first ‘Blue Skies’ country in the world – the first without any contrails in the sky.”

“Steven’s pioneering work on contrail formation and avoidance is a key element in reducing the environmental impact of aviation, and will strengthen the UK’s position as a world leader in this area,” said Professor Colm Durkan, Head of Cambridge’s Department of Engineering. “Together with Steven’s work on alternative aviation propulsion systems, this will strengthen Cambridge’s vision of helping us all achieve net zero at an accelerated rate.”

In addition to the Professorship in Engineering, there are seven other Regius Professorships at Cambridge: Divinity, Hebrew, Greek, Civil Law and Physic (all founded by Henry VIII in 1540), History (founded by George I in 1724) and Botany (founded in 2009, to mark the University’s 800th anniversary).



The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

AI speeds up drug design for Parkinson’s ten-fold

Professor Michele Vendruscolo wearing a white lab coat

source: www.cam.ac.uk

Researchers have used artificial intelligence techniques to massively accelerate the search for Parkinson’s disease treatments.

Machine learning is having a real impact on drug discovery – it’s speeding up the whole process of identifying the most promising candidatesMichele Vendruscolo

The researchers, from the University of Cambridge, designed and used an AI-based strategy to identify compounds that block the clumping, or aggregation, of alpha-synuclein, the protein that characterises Parkinson’s.

The team used machine learning techniques to quickly screen a chemical library containing millions of entries, and identified five highly potent compounds for further investigation.

Parkinson’s affects more than six million people worldwide, with that number projected to triple by 2040. No disease-modifying treatments for the condition are currently available. The process of screening large chemical libraries for drug candidates – which needs to happen well before potential treatments can be tested on patients – is enormously time-consuming and expensive, and often unsuccessful.

Using machine learning, the researchers were able to speed up the initial screening process ten-fold, and reduce the cost by a thousand-fold, which could mean that potential treatments for Parkinson’s reach patients much faster. The results are reported in the journal Nature Chemical Biology.

Parkinson’s is the fastest-growing neurological condition worldwide. In the UK, one in 37 people alive today will be diagnosed with Parkinson’s in their lifetime. In addition to motor symptoms, Parkinson’s can also affect the gastrointestinal system, nervous system, sleeping patterns, mood and cognition, and can contribute to a reduced quality of life and significant disability.

Proteins are responsible for important cell processes, but when people have Parkinson’s, these proteins go rogue and cause the death of nerve cells. When proteins misfold, they can form abnormal clusters called Lewy bodies, which build up within brain cells stopping them from functioning properly.

“One route to search for potential treatments for Parkinson’s requires the identification of small molecules that can inhibit the aggregation of alpha-synuclein, which is a protein closely associated with the disease,” said Professor Michele Vendruscolo from the Yusuf Hamied Department of Chemistry, who led the research. “But this is an extremely time-consuming process – just identifying a lead candidate for further testing can take months or even years.”

While there are currently clinical trials for Parkinson’s currently underway, no disease-modifying drug has been approved, reflecting the inability to directly target the molecular species that cause the disease.

This has been a major obstacle in Parkinson’s research, because of the lack of methods to identify the correct molecular targets and engage with them. This technological gap has severely hampered the development of effective treatments.

The Cambridge team developed a machine learning method in which chemical libraries containing millions of compounds are screened to identify small molecules that bind to the amyloid aggregates and block their proliferation.

A small number of top-ranking compounds were then tested experimentally to select the most potent inhibitors of aggregation. The information gained from these experimental assays was fed back into the machine learning model in an iterative manner, so that after a few iterations, highly potent compounds were identified.

“Instead of screening experimentally, we screen computationally,” said Vendruscolo, who is co-Director of the Centre for Misfolding Diseases. “By using the knowledge we gained from the initial screening with our machine learning model, we were able to train the model to identify the specific regions on these small molecules responsible for binding, then we can re-screen and find more potent molecules.”

Using this method, the Cambridge team developed compounds to target pockets on the surfaces of the aggregates, which are responsible for the exponential proliferation of the aggregates themselves. These compounds are hundreds of times more potent, and far cheaper to develop, than previously reported ones.

“Machine learning is having a real impact on drug discovery – it’s speeding up the whole process of identifying the most promising candidates,” said Vendruscolo. “For us, this means we can start work on multiple drug discovery programmes – instead of just one. So much is possible due to the massive reduction in both time and cost – it’s an exciting time.”

The research was conducted in the Chemistry of Health Laboratory in Cambridge, which was established with the support of the UK Research Partnership Investment Fund (UKRPIF) to promote the translation of academic research into clinical programmes.

Reference:
Robert I Horne et al. ‘Discovery of Potent Inhibitors of α-Synuclein Aggregation Using Structure-Based Iterative Learning.’ Nature Chemical Biology (2024). DOI: 10.1038/s41589-024-01580-x



The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Enterprising Minds

Quantum leap

By Sarah Fell

source: www.cam.ac.uk

WHO? Founder and CEO of Cambridge spinout, Nu Quantum, Carmen Palacios-Berraquero, has a PhD in physics from Cambridge and is the recipient of numerous accolades, including the Jocelyn Bell Burnell Medal and Prize for exceptional early-career contributions to physics by a female physicist.

She is also a founding member and Director of UKQuantum, the voice of the UK’s quantum industry and a member of the Technical Advisory Group to UKRI’s National Quantum Computing Centre.

WHAT? Building the quantum networking infrastructure essential to scaling quantum
computers.

WHY? “Quantum computing is going to be the defining technology of this century. It’s a privilege to be in this moment of time, developing this technology which is going to change everything.”

Why did your parents decide to educate you in a British School in Madrid? Both my parents are medical doctors. My dad in particular has always done cancer research but he struggled with having to learn English later on in life. It was always front of mind for him that he wanted his daughters not to have to worry about that.

From a very early age, I knew I wanted to study physics – and to do so abroad. Having had a British education made me think of applying to Imperial for my first degree.

Did you always want to do a PhD? It was pretty clear to me that I would do one. After my degree, I was accepted into two PhD programmes – one here and one in Oxford. I chose Cambridge, joining the Nanotechnology Centre for Doctoral Training (CDT).

That meant doing a master’s before starting the PhD. That first year was great: I had a lot of fun and it gave me a chance to understand how research works, the kinds of things people research and what my options might be.

Even though I was part of the Nanotechnology CDT, quantum physics was always my favourite subject so that’s where I ended up. My supervisor, Professor Mete Atatüre, said: “There’s this new thing – 2D materials and quantum optics – do you want to do it?” It sounded perfect, a new field, ripe for research.

My PhD was very successful. I published two highly cited first author papers and filed a patent.

At this point, did you think you were on a conventional academic career path? By the time I got to Cambridge, I definitely thought I would pursue an academic career, become a professor and all that.

What changed your mind? I became disillusioned with academia. I didn’t really feel like I wanted to carry on and apply for a postdoc position.

For a while, I continued to work on a really challenging experimental project but Cambridge Enterprise (the University’s technology transfer arm) kept asking me what I was planning to do with the patent I had filed during my PhD.

They suggested that I go on the University’s Impulse programme. By the time the programme finished, everything started to snowball.

“I suddenly realised that this is quite fun and I’m quite good at it.”

I began to understand more about the quantum industry. 2018 felt transitional – it was, in fact, when the majority of quantum start-ups were founded: it seemed like the moment when research leaves academia and goes out into the real world.

I was asked to pitch at an event in London. An investor saw me and invited me to join an accelerator programme, even though it was for Series A companies and I didn’t even have a piece of paper with the company name on it.

In September 2018, I incorporated the company just so that I could go on that programme. I started to work with the entrepreneur in residence there, applied for a small grant and was given £20k by Cambridge Enterprise. I suddenly realised that this is quite fun and I’m quite good at it.

It sounds as if you had to be persuaded that founding a company was a good idea? Kind of. I gradually became less sceptical over time. Now, I absolutely love it!

“Quantum computing is going to be the defining technology of this century.”

Can you explain – in simple terms – what Nu Quantum does? We believe quantum computing is going to be transformational, the defining technology of this century, much like classical computers were in the last one.

Instead of the binary logic we are used to in computing – zeros and ones – in quantum, we have qubits (short for quantum bits). These qubits can be entangled together creating multi-qubit superposition states. Essentially, in very simplified terms, this could mean that you are able to explore an exponentially large number of solutions to a problem at the same time.

The problem is that it’s really hard to build these computers. A qubit is embodied in an object such as a single atom: assembling and controlling them is difficult as quantum states are very fragile. Qubits need to be completely isolated from everything and their interactions controlled super-precisely which is why we need advanced infrastructure such as an array of fridges, lasers and ultra-high vacuum systems.

And because qubits are not perfect we need many of them – around a million – to make the kind of calculations we think will be life-changing.

At the moment, we are managing around 100 qubits in one machine. We think we can get to thousands per machine in the next five years. But that’s still orders of magnitude from where we need to be.

So we need to think about a modular approach, with many computers connected together. The analogy is with high-performance compute clusters which are also modular, with many, many computing cores all connected together.

A quantum network extends the entanglement that exists inside each individual quantum computing unit, and creates entanglement so that all the modules can work together to carry out a larger computation.

This is what we are doing, building these quantum computing networks so that we can scale quantum computers. Unsurprisingly, it’s very hard to do.

How do you think quantum computing is going to change our lives? In lots of ways but some of the most exciting applications are likely to be in designing new materials and optimising drugs in ways, and at speeds, which are out of reach today.

What are you most excited about? Everything. We are one of the only quantum networking companies in the world. Without this technology the world won’t be able to build quantum computers. We are designing how to inter-connect quantum computers, what the different parts of a modular architecture are, what they are called and how the protocols work. It’s a privilege to be in this moment in time, developing this technology.

“I’ve learnt that there are constant problems but also constant successes: it’s not like you ever arrive at a steady state.”

How have you found growing the team? It’s been great. We have tripled in size in the last 12 months.

Nine months ago, hiring was the number one risk because we had several new projects and contracts and so we had to grow fast and that’s hard to do but we’ve done it. We’ve hired an amazing team.

Has being in Cambridge helped with that? For sure. Half of our technical team are physics and quantum PhDs and the other half are industry engineers. Some of our scientists come from the University and they are very international. Our engineers, on the other hand, tend to come from other great technology companies around Cambridge.

Cambridge and the UK more widely is an attractive place for people to move to, which really helps.

You clearly love physics and quantum. Are you getting enough of that now that you’re growing so fast? I do a bit of everything. It’s been a long time since I did any deep, detailed implementation of the technology in the lab but I’m involved in all functions of the business at the right level.

My role is understanding where the company needs to go to be successful commercially and ensuring that we are all rowing in the same direction. It’s about understanding both the industry and the technology.

I’m very lucky with my management team. Everyone in my team is an expert in their field. I trust them – and they trust me.

How competitive is the UK’s quantum industry? The UK is one of the top countries in terms of funding, the number of patents, the number of companies and the level of government support. The other big players are the US, China, Canada, and Europe. The US is very strong with big tech companies investing in quantum like Cisco, Google, IBM and Intel but the UK has the opportunity to have some world-leading players and I hope Nu Quantum will be one of them.

Who’s influenced or inspired you? I learn from my management team every day as well as from my investors.

What are you most proud of? The team and the strategy. We didn’t start out on this path – we’ve had a major pivot. We had seen something that no-one else had seen, we moved there early and we are now doing the work of creating this category.

What about setbacks? Pre-pivot it was hard for many reasons, not least during the pandemic when all our labs were closed.

And it continues to be hard. There are always going to be problems.

What have you learnt? So much. It turns out that I’m way more commercially minded than I thought and now what I bring is the commercial strategy and building partnerships.

I’ve also learnt that there are constant problems to solve but also constant successes: it’s not like you ever arrive at a steady state.

What would your colleagues say is your greatest strength? Maybe something to do with drive or energy? Also that I enjoy problem-solving on a massive scale.

What about weaknesses? The other side of the coin is that I can be too driven, which may spill over into impatience.

Do you have a piece of advice for someone who is interested in starting a business? Give it a go!

What do you like doing in your spare time? Dancing and spending time with my friends and family

Quick fire

Optimist or pessimist? Optimist.
People or ideas? It has to be people.
On time or running late? Roughly on time which is maybe five minutes late.
The journey or the destination? The journey.
Team player or lone wolf? Team player.
Novelty or routine? Novelty.
Big picture or fine detail? Big picture.
Do you have to be lucky or make your own luck? Make your own luck.
Work, work, work or work-life balance? Work-life balance. I like to have fun.

Enterprising Minds has been developed with the help of Bruno Cotta, Visiting Fellow & Honorary Ambassador at the Cambridge Judge Business School.

Published 21 March 2024

All photography: StillVision

The text in this work is licensed under a Creative Commons Attribution 4.0 International License

High ambitions

University backs
Cambridge Standing Tall trail

By Stephen Bevan
Published: 21 March 2024

source: www.cam.ac.uk

The University is backing the Cambridge Standing Tall art trail to support the aspirations of young care leavers in the region.

Proceeds from the city-wide trail of 31 large giraffe sculptures – which includes three sponsored by the University – will support Break, a charity working with young people in and around care in the East of England.

The University has sponsored: Growth, located outside Great St Mary’s Church on Senate House Hill, Cosmic Explorer at Eddington Square, and Hubert outside the door to the West Hub in JJ Thomson Avenue.

Growth is at the heart of education, so East Anglia artist Charlie Stafford’s design was a perfect fit for the University, which also shares Break’s commitment to helping young people achieve their full potential, regardless of background. The welfare system in place at Cambridge includes a range of services to help support our care-experienced students.

Charlie, an art lecturer at USP college in Essex, said: “The design is inspired by the idea that no matter where you come from, or what start you’ve had in life, you can grow as a person, create your own opportunities and become your ‘best self’. Most of us have experienced some level of hardship in our lives, so people can connect with the sculpture on any level they want.

“Personally, it represents a huge part of who I’ve become as well. Growing up, my family didn’t have a lot of money, and I was actually a young carer myself, and that was a big focus of my life.

“It’s also about sustainability, regenerative practice and giving back to the community, because community is a big part of how you move forward. If I hadn’t had the help of all my teachers and everyone else who banded together around me, I wouldn’t be where I am now. I’ve had a lot of support, and if I can give that back I will.”

As well as the giant giraffes, more than 60 smaller ‘Mini G’ giraffe sculptures – decorated by schools and community groups – will be on show in shopping centres, shop windows and libraries, as part of Cambridge Standing Tall’s Learning & Community Programme. University students took part in a workshop with Charlie to decorate one of them, Gerard, which is on display in the Grand Arcade.

“It was great,” said Charlie. “I think it aligned really well with them, and it was really good to hear them talk about themselves, their experiences and how much they love the University. They were so forward-thinking and creative with their designs, and each one of them now has some sort of ownership on the art, and has represented some part of themselves, no matter how small.”

Professor Kamal Munir with artist Charlie Stafford, and giraffe sculpture Growth

Charlie painting her design Growth

Kirstyn Kedaitis, Widening Participation Co-ordinator, and artist Charlie Stafford in the Grand Arcade with Gerard

Cosmic Explorer at Eddington Square

United, at Cambridge University Press Bookshop in Trinity Street

Hubert at the West Hub

Camelopard at Corpus Christi College

Cosmic Explorer is the name of the artwork in Eddington. It speaks to the community because of the link to the neighbourhood namesake Arthur Eddington, a Cambridge physicist whose experiments confirmed Einstein’s theory of general relativity and led to its general acceptance. The feet of the giraffe are rooted in planet Earth’s different landscapes, and as your eyes move up, the artwork takes you beyond into the universe.

Artist Amrit Singh said: “The artistic design of the giraffe is based on the idea of a creative and cosmic wanderer: a person who ventures to new places, and the excitement and wonder of exploring new frontiers. It’s also inspired by the imagination and all the fantastic places our minds can create. It is abstract landscape which uses elements of nature and space with vibrant colours, bold shapes, metallics and texture which invites you to touch and experience the artwork.

Hubert – the promotional giraffe for the Cambridge Standing Tall Trail – is outside the door to the West Hub, and a Mini G, co-sponsored with residential developer Hill, and painted by schoolchildren at the University of Cambridge Primary School, is on display in the Storey’s Field Centre in Eddington.

Kamal Munir, Pro-Vice-Chancellor for University Community and Engagement, said: “The University of Cambridge is committed to widening participation in higher education, including for care-experienced and estranged young people through the Realise Project, which supports students from highly marginalised groups typically under-represented at the university level. We are pleased to support Break and are looking forward to participating in Cambridge Standing Tall.”

Corpus Christi College is also taking part in Cambridge Standing Tall. Mini G Camelopard (a medieval word for ‘giraffe’), was decorated by PhD student Emma Bouckley.

Find out more about the Standing Tall Trail at: www.cambridgestandingtall.co.uk

The text in this work is licensed under a Creative Commons Attribution 4.0 International License.

MIXED FORTUNES AT 150TH FOOTBALL VARSITY

A comprehensive win and a loss on penalties.

source: www.cam.ac.uk

Credit: Cambridge United FC / Izzy Poles

On Friday 15th March Cambridge men and women’s teams played Oxford in the 150th Varsity football matches.

Cambridge women’s team chalked up a resounding 3-0 victory. The first goal came courtesy of central midfielder Ella O’Connell, before centre-back Allie Rennie extended Cambridge’s lead with another two more goals, one in the first half and one in the second that also saw Rennie named player of the match.

The men’s game was a more closely fought battle as Cambridge drew the match 1-1 before losing on penalties.

Oxford took the first goal in just the 3rd minute before Cambridge Captain, Cai La Trobe-Roberts, scored an equaliser in the 73rd minute.

With Cambridge suffering an injured goalkeeper, the following penalty shootout saw Oxford take home the trophy, winning 3-0 on penalties.

Women’s team

Emilia Keavney (Homerton)Nellie Ash (Jesus)Zoe Richardson (Emmanuel)Allie Rennie (St Catharine’s)Arden Dierker Viik (Hughes Hall)Alexia Dengler (Gonville and Caius)Katie Sparling (Jesus)Abbie Hastie (Emmanuel)Alissa Sattentau (King’s)Ella O’Connell (King’s)Fran Mangeolles (King’s)Leah Knight (Sidney Sussex)Jasmine Wright (Emmanuel)Isabella Winnifrith (King’s)Lara Branston (Jesus)Julieta Macome (Newnham)Eva Straw (Sidney Sussex)Lalini Colas (Homerton)

Credit: Cambridge United FC

Credit: Cambridge United FC

Credit: Cambridge United FC

Men’s team

  • Aram Sarkissian (Trinity Hall)
  • Makafui Avevor (Robinson)
  • Patrick Brownlow (Fitzwilliam)
  • Reece Linney (Girton)
  • Tristan Martin (Christ’s)
  • Lemuel Osei-Biney (Downing)
  • Masaki Kawasaki (Sidney Sussex)
  • Aaran Mehmood (Emmanuel)
  • Deniz Ozer (Trinity Hall)
  • Kit Angel-Scott (Wolfson)
  • Joey Dalton (Magdalene)
  • Cai La Trobe-Roberts (Jesus)
  • Josh Hickingbotham (Girton)
  • Lucca Martins (St John’s)
  • Asa Campbell (Fitzwilliam)
  • Fortina Oshasha (Jesus)
  • Aaron Kay (Clare)
  • Moritz Przybilla (Queens’)

Unveiling Darwin’s treasures

200-year-old plant specimens from historic
voyage make their television debut

Story by Jessica Keating
21 March 2024

Plant specimens collected by Charles Darwin on the famous Voyage of the Beagle between 1831 and 1836, rarely seen for 200-years, are being shown by Cambridge University researchers and curators as part of a new TV series with Susan Calman exploring Darwin’s relationship with Professor John Stevens Henslow.

Channel 5’s ‘Susan Calman’s Great British Cities’ visited Cambridge University Botanic Garden and the University’s Herbarium to see the rare plant specimens held there and discover how Henslow’s understanding of plants inspired his most famous student, Charles Darwin. 

Henslow was Professor of Botany at Cambridge University and founded the current Cambridge University Botanic Garden in 1846, where the herbarium specimens reside as part of the University’s Department of Plant Sciences.

Throughout his time on the Voyage of the Beagle, Darwin was regularly posting specimens back to his teacher, friend and mentor, Professor John Stevens Henslow. Insightful letters exchanged between the two during the voyage – including Henslow complaining about Darwin’s packaging – are held at the Cambridge University Library.

Chart of the Beagle’s voyage. Charles Darwin travel map – Scanned 1880 Engraving

Specimens put on display for filming include a lichen specimen collected by Darwin in Tierra del Fuego in 1833 – believed not to have been looked at since Henslow’s time. It was uncovered ahead of the show with no classification or modern determination slips and has never been the subject of scientific or historical analysis. 

Other rarely seen items were fungal herbarium specimens from Brazil that remain wrapped in the original newspaper Darwin used to preserve them on the Beagle. One news sheet shown is dated Wednesday October 22nd 1828 and priced at 7d. 

Two seaweed specimens, collected by Darwin on the beach of Tierra del Fuego, also remain in an incredible condition, dated 1833 with additional details recorded by their famous collector. These particular specimens correspond with letters from Darwin, held in the Cambridge University Library (CUL), where he describes meeting the indigenous people of Tierra del Fuego and observing them on the beach.

Other specimens shown for the cameras include Opuntia (prickly pear) cacti, on which Henslow has added the name he devised for this important species “Opuntia galapagea” and where Darwin collected them, simply recorded as “Galapagos”.

These were the subject of a paper by Henslow, as well as a detailed illustration also residing in the Herbarium, that he would go on to use in his teachings. The paper recorded Darwin’s observations on how the plant integrated with its surroundings and provided a vital water source for the resident iguanas. Observations of interactions between these and similar organisms proved essential in igniting the evolutionary theories Darwin published decades later.

Opuntia Cacti specimens collected by Darwin in the Galapagos, next to illustrations of the plants drawn by Henslow

A hand-written letter from Henslow to Darwin, addressed “My dear Darwin”

Seaweed specimens, collected by Darwin on the beach of Tierre del Fuego, signed and dated 1833

Henslow’s personal botany book

A sheet of newspaper from 1828 that Darwin took with him on the Voyage of the Beagle and used to wrap specimens in when posting them back to Henslow in Cambridge

The team exploring and inspecting some of the archival collection

Specimens, newspaper used as wrapping and illustrations unveiled for filming

As Darwin’s Professor, Henslow was responsible for inspiring his love of natural history and it was Henslow that put him forward for the Voyage of the Beagle. Darwin later described it as “by far the most important event in my life”.

Henslow’s progressive, hands-on teaching techniques, which included meticulous observing, collecting, storing and recording were ground-breaking for the time and are why Darwin’s detailed specimens survive to this day, informing modern research.

 “A major drive for the collection of plants was to explore how they interacted with the wider world in order to gain a better understanding of ‘God’s creation’. Henslow, in particular, was fascinated with plant physiology and the question of: ‘Why does God design these plants in this way?’

“Darwin was taught botany in this line known as ‘natural theology’ and there was never any doubt in God’s existence. As we know, in later life Henslow and Darwin diverged on this but that curiosity to explore plants in relation to their wider environments was sparked by Henslow’s pioneering teaching.” Dr Edwin Rose, AHRC Early Career Research Fellow and Advanced Research Fellow at Darwin College, who shows Susan Calman the specimens in the Channel 5 programme

Illustrations by Professor John Stevens Henslow that he used as teaching aids with his pupils including Charles Darwin

Other Darwin-related items held in the extensive Herbarium collection include:

  • Darwin’s first ever recorded specimen, collected on a field trip with Henslow in North Wales
  • The diary of Darwin’s class rival, Charles Babington, who would irritate Darwin by going to the Cambridge Fens in the early mornings to collect the ‘best’ beetles first
  • Original wall charts, illustrated by Henslow (such as the one pictured above) that Darwin learned from and saw displayed in the walls of the lecture room
  • Henslow’s personal copies of James Edward Smith’s Compendium floræ Britannicæ (1829), in which he notes specimens found during the numerous forays to the local countryside with students – including Darwin.

“Plant specimens like Darwin’s, and the rest of the 1.1 million we hold at the Herbarium, are vital for modern-day research. They are verifiable evidence that allows us to monitor and see how environments have changed over time, how humans have impacted specific environments and how climate has changed environments. They allow us to extrapolate information to see if the temperature was similar in the past, or if it’s changed and using modelling we can see what the environment will be like in the future. All this evidence going backwards, allows us to predict forwards and is used in a huge amount of research these days.”Dr Lauren Gardiner, Curator of the Cambridge University Herbarium

The Cambridge episode of Susan Calman’s Great British Cities will air at 9pm, 22nd March on Channel 5 and the series is also available on My5.

Susan Calman with Sally Petitt, CUBG Head of Horticulture. Credit: Channel 5

Dr Edwin Rose shows Susan Calman the archive materials during filming

Delving into Henslow and Darwin

The little-known relationship between Charles Darwin and his innovative teacher, of whom he wrote “a better man never walked this earth”

Vintage illustration of Professor John Stevens Henslow

Professor John Stevens Henslow (1796-1861) was a British botanist, clergyman, and geologist who popularised botany at the University of Cambridge by introducing new methods of teaching the subject. Notably he initiated the move of the Cambridge University Botanic Garden to its present site in 1846.

In 1822 Henslow was made Professor of Mineralogy at Cambridge and in 1825 he became Professor of Botany, where he introduced a teaching technique fostering independent discovery. His students were inspired to collect plants and asked to examine and record the characteristics of the structures they found.

This method, combined with unusual field trips, interesting lectures, and Henslow’s natural enthusiasm, made botany one of the most popular subjects at the university. His class list would extend to as many as 80 students, at a time when the total University population was only in the low hundreds. One of the students Henslow served as a source of inspiration for was Charles Darwin, whom he taught between 1829 and 1831. 

Between 1821 and 1835 Henslow expanded and reorganised the Cambridge University Herbarium, adding over 10,000 specimens from across Britain and the wider world. It became the basis for the Cambridge University Herbarium that we know today. He organised his herbarium to emphasise variation within species and determine the limits between species. To aid him, he enlisted about a hundred collaborators, one of whom was the young Charles Darwin.

Charles Darwin attended Cambridge University in 1828 to study Theology with a view to becoming a priest but was soon skipping his own classes to attend Henslow’s botany lectures and field trips instead. Darwin took Henslow’s course three years running and by the end was assisting with teaching it.

It was Professor Henslow’s inspirational teaching on the nature of plant species that established the necessary intellectual framework for Darwin’s subsequent evolutionary thinking.

The extraordinary botanical collections at Cambridge University Botanic Garden and the University Herbarium, tell the story of one of the greatest teacher-student relationships in history – that of John Stevens Henslow and Charles Darwin.

“Together these two pioneers laid down a Cambridge tradition in studying plant diversity that is maintained to this day, and our botanical collections continue to drive important scientific discoveries, from the discovery of new plant species to the genetic basis of crop disease resistance.”Professor Samuel Brockington, Curator of Cambridge University Botanic Garden

When Darwin took his famous trip on the HMS Beagle in 1831, his place was arranged by Henslow. Visiting the Galapagos islands, Darwin began by arranging his observations in a framework set out by Henslow that assumed the stability of species.

In recent years, academics have put forth that the instruction Darwin received from Henslow set the framework for the new understanding Darwin came to: that varieties are incipient species. Darwin’s theory of mutability would later find its full expression in his canonical On the Origin of Species first published in 1859.

“By far the most important event of my life”Charles Darwin speaking about his trip on the Beagle that Henslow arranged for him

Henslow remained a mentor and friend to Darwin for the rest of his life. Other famous students and contemporaries of Henslow included Miles Joseph Berkeley, Charles Cardale Babington, Leonard Jenyns, Richard Thomas Lowe and William Hallowes Miller.

The Cambridge episode of Susan Calman’s Great British Cities will air at 9pm, 22nd March on Channel 5 and the series is also available on My5.

The text in this work is licensed under a Creative Commons Attribution 4.0 International License.

Story by Jessica Keating
Published: 24 March 2024

Fish fed to farmed salmon should be part of our diet, too, study suggests

Mackerel with potato salad

source: www.cam.ac.uk

The public are being encouraged to eat more wild fish, such as mackerel, anchovies and herring, which are often used within farmed salmon feeds. These oily fish contain essential nutrients including calcium, B12 and omega-3 but some are lost from our diets when we just eat the salmon fillet.

Making a few small changes to our diet around the type of fish that we eat can go a long way to changing some of these deficiencies and increasing the health of both our population and planetDr David Willer, Zoology Department

Scientists found that farmed salmon production leads to an overall loss of essential dietary nutrients. They say that eating more wild ‘feed’ species directly could benefit our health while reducing aquaculture demand for finite marine resources.

Researchers analysed the flow of nutrients from the edible species of wild fish used as feed, to the farmed salmon they were fed to. They found a decrease in six out of nine nutrients in the salmon fillet – calcium, iodine, iron, omega-3, vitamin B12 and vitamin A, but increased levels of selenium and zinc.

Most wild ‘feed’ fish met dietary nutrient recommendations at smaller portion sizes than farmed Atlantic salmon, including omega-3 fatty acids which are known to reduce the risk of cardiovascular disease and stroke.

“What we’re seeing is that most species of wild fish used as feed have a similar or greater density and range of micronutrients than farmed salmon fillets,” said lead author, Dr David Willer, Zoology Department, University of Cambridge.

“Whilst still enjoying eating salmon and supporting sustainable growth in the sector, people should consider eating a greater and wider variety of wild fish species like sardines, mackerel and anchovies, to get more essential nutrients straight to their plate.”

In the UK, 71% of adults have insufficient vitamin D in winter, and teenage girls and women often have deficiencies of iodine, selenium and iron. Yet while, 24% of adults ate salmon weekly, only 5.4% ate mackerel, 1% anchovies and just 0.4% herring.

“Making a few small changes to our diet around the type of fish that we eat can go a long way to changing some of these deficiencies and increasing the health of both our population and planet,” said Willer.

The researchers found consuming one-third of current food-grade wild feed fish directly would be the most efficient way of maximising nutrients from the sea.

“Marine fisheries are important local and global food systems, but large catches are being diverted towards farm feeds. Prioritising nutritious seafood for people can help improve both diets and ocean sustainability,” said senior author Dr James Robinson, Lancaster University.

This approach could help address global nutrient deficiencies say the team of scientists from the University of Cambridge, Lancaster University, University of Stirling and the University of Aberdeen.

The study was published today in the journal, Nature Food

The scientists calculated the balance of nutrients in edible portions of whole wild fish, used within pelleted salmon feed in Norway, compared to the farmed salmon fillets.

They focused on nine nutrients that are essential in human diets and concentrated in seafood – iodine, calcium, iron, vitamin B12, vitamin A, omega-3 (EPA + DHA), vitamin D, zinc and selenium.

The wild fish studied included Pacific and Peruvian anchoveta, and Atlantic herring, mackerel, sprat and blue whiting – which are all marketed and consumed as seafood.

They found that these six feed species contained a greater, or similar, concentration of nutrients as the farmed salmon fillets. Quantities of calcium were over five times higher in wild feed fish fillets than salmon fillets, iodine was four times higher, and iron, omega-3, vitamin B12, and vitamin A were over 1.5 times higher.

Wild feed species and salmon had comparable quantities of vitamin D.

Zinc and selenium were found to be higher in salmon than the wild feed species – the researchers say these extra quantities are due to other salmon feed ingredients and are a real mark of progress in the salmon sector.

“Farmed salmon is an excellent source of nutrition, and is one of the best converters of feed of any farmed animal, but for the industry to grow it needs to become better at retaining key nutrients that it is fed. This can be done through more strategic use of feed ingredients, including from fishery by-products and sustainably-sourced, industrial-grade fish such as sand eels”, said Dr Richard Newton of the Institute of Aquaculture, University of Stirling, whose team also included Professor Dave Little, Dr Wesley Malcorps and Björn Kok.

 “It was interesting to see that we’re effectively wasting around 80% of the calcium and iodine from the feed fish – especially when we consider that women and teenage girls are often not getting enough of these nutrients”.

Willer said “These numbers have been underacknowledged by the aquaculture industry’s standard model of quoting Fish In Fish Out (FIFO) ratios rather than looking at nutrients.

The researchers would like to see a nutrient retention metric adopted by the fishing and aquaculture industries. They believe that if combined with the current FIFO ratio, the industry could become more efficient, and reduce the burden on fish stocks that also provide seafood. The team are building a standardised and robust vehicle for integrating the nutrient retention metric into industry practice.

“We’d like to see the industry expand but not at a cost to our oceans,” said Willer.

“We’d also like to see a greater variety of affordable, convenient and appealing products made of wild ‘feed’ fish and fish and salmon by-products for direct human consumption.”

The research was funded by the Scottish Government’s Rural and Environmental Science and Analytical Services Division (RESAS), a Royal Society University Research Fellowship, a Leverhulme Trust Early Career Fellowship a Henslow Fellowship at Murray Edwards College and the University of Cambridge.

Reference: D. Willer et al. Wild fish consumption can balance nutrient retention in farmed fish Nature Food DOI: 10.1038/s43016-024-00932-z



The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

£3 million UKRI funding to support research into better health, ageing, and wellbeing

The University of Cambridge has received UKRI funding for research on age-related biological changes in model organisms as part of a national collaboration.

‘Prevention is better than cure’ and so our project will generate a reference map that we will use in the future to assess interventions that could prevent ageing related health decline – Walid Khaled

UKRI funding of £3 million is awarded today to support a new research cluster, as part of the MRC National Mouse Genetics Network (MRC NMGN), focused on improving existing models of ageing with the aim of improving lifelong health and wellbeing. The cluster is led by scientists at the Universities of Cambridge and Newcastle.

Brown genetically-modified mouse on a person's hand
Brown GM mouse on hand
Credit: Understanding Animal Research

The MRC NMGN focuses on age-related biological changes in model organisms, particularly the mouse, to try and improve our understanding and diagnosis of the most challenging disease area of our time – and generate therapeutic avenues.

This award brings the UKRI’s total investment in the MRC NMGN to £25 million.

The need to improve how people age has become a major requirement of modern societies. Regular increases in life expectancy result in older populations, making healthy ageing essential for a better quality of life and a reduced burden on health and social services. 

Understanding the biological mechanisms underlying the ageing process is paramount for tackling the challenges brought about by our older populations.

The new tools generated as a result of this research will be made available to the scientific community to improve understanding of the ageing process, and to provide a resource for preclinical testing and intervention.

Professor Walid Khaled from Cambridge’s Wellcome-MRC Cambridge Stem Cell Institute and Department of Pharmacology, and Co-lead of the new MRC National Mouse Genetics Network Ageing Cluster, said: “I am very pleased to be co-leading this project from Cambridge and I am looking forward to working with the rest of the team from around the UK. ‘Prevention is better than cure’ and so our project will generate a reference map that we will use in the future to assess interventions that could prevent ageing related health decline.”

Professor Anne Ferguson-Smith, Pro-Vice-Chancellor (Research & International Partnerships) and Arthur Balfour Professor of Genetics at Cambridge, said: “Collaboration is central to our research activities in Cambridge. The new Ageing Cluster is a fine example of multiple institutions working together to add value and bring exciting new insight and expertise to advance the critically important field of healthy ageing. I am proud to be part of this important initiative which can deliver new routes to improved health span.”

Professor David Burn, Pro Vice Chancellor, Faculty of Medical Sciences at Newcastle University, added: “I am delighted that Newcastle University is an important part of the UKRI Mouse Genetics Network Ageing Cluster.  This cluster offers researchers the opportunity to develop new animal models so that we may better understand ageing.  This, in turn, will allow us to translate this research into extending healthy lifespan in humans in the future.”

The University is bringing together its world leading expertise to tackle the topic of extending the healthy lifespan. Scientists in the School of Biological Sciences are addressing some of the biggest questions in human biology, including: What if we could identify those at risk of developing chronic age-related conditions before they present in the clinic? What if we could intervene before any symptoms arise and prevent disease onset?

UKRI’s strategy for 2022-2027 aims to harness the full power of the UK’s research and innovation system to tackle major national and global challenges. A total of £75m has been allocated to the theme of Securing better health, ageing and wellbeing, which aims to improve population health, tackle the health inequalities affecting people and communities, and advance interventions that keep us healthier for longer.

Read more about Cambridge research into extending the healthy lifespan.

source: cam.ac.uk



The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Sensors made from ‘frozen smoke’ can detect toxic formaldehyde in homes and offices

Researchers have developed a sensor made from ‘frozen smoke’ that uses artificial intelligence techniques to detect formaldehyde in real time at concentrations as low as eight parts per billion, far beyond the sensitivity of most indoor air quality sensors.

The researchers, from the University of Cambridge, developed sensors made from highly porous materials known as aerogels. By precisely engineering the shape of the holes in the aerogels, the sensors were able to detect the fingerprint of formaldehyde, a common indoor air pollutant, at room temperature.

A block of silica aerogel being held in a person's hand

The proof-of-concept sensors, which require minimal power, could be adapted to detect a wide range of hazardous gases, and could also be miniaturised for wearable and healthcare applications. The results are reported in the journal Science Advances.

Volatile organic compounds (VOCs) are a major source of indoor air pollution, causing watery eyes, burning in the eyes and throat, and difficulty breathing at elevated levels. High concentrations can trigger attacks in people with asthma, and prolonged exposure may cause certain cancers.

Formaldehyde is a common VOC and is emitted by household items including pressed wood products (such as MDF), wallpapers and paints, and some synthetic fabrics. For the most part, the levels of formaldehyde emitted by these items are low, but levels can build up over time, especially in garages where paints and other formaldehyde-emitting products are more likely to be stored.

According to a 2019 report from the campaign group Clean Air Day, a fifth of households in the UK showed notable concentrations of formaldehyde, with 13% of residences surpassing the recommended limit set by the World Health Organization (WHO).

“VOCs such as formaldehyde can lead to serious health problems with prolonged exposure even at low concentrations, but current sensors don’t have the sensitivity or selectivity to distinguish between VOCs that have different impacts on health,” said Professor Tawfique Hasan from the Cambridge Graphene Centre, who led the research.

“We wanted to develop a sensor that is small and doesn’t use much power, but can selectively detect formaldehyde at low concentrations,” said Zhuo Chen, the paper’s first author.

The researchers based their sensors on aerogels: ultra-light materials sometimes referred to as ‘liquid smoke’, since they are more than 99% air by volume. The open structure of aerogels allows gases to easily move in and out. By precisely engineering the shape, or morphology, of the holes, the aerogels can act as highly effective sensors.

Working with colleagues at Warwick University, the Cambridge researchers optimised the composition and structure of the aerogels to increase their sensitivity to formaldehyde, making them into filaments about three times the width of a human hair. The researchers 3D printed lines of a paste made from graphene, a two-dimensional form of carbon, and then freeze-dried the graphene paste to form the holes in the final aerogel structure. The aerogels also incorporate tiny semiconductors known as quantum dots.

The sensors they developed were able to detect formaldehyde at concentrations as low as eight parts per billion, which is 0.4 percent of the level deemed safe in UK workplaces. The sensors also work at room temperature, consuming very low power.

“Traditional gas sensors need to be heated up, but because of the way we’ve engineered the materials, our sensors work incredibly well at room temperature, so they use between 10 and 100 times less power than other sensors,” said Chen.

To improve selectivity, the researchers then incorporated machine learning algorithms into the sensors. The algorithms were trained to detect the ‘fingerprint’ of different gases, so that the sensor was able to distinguish the fingerprint of formaldehyde from other VOCs.

“Existing VOC detectors are blunt instruments – you only get one number for the overall concentration in the air,” said Hasan. “By building a sensor that can detect specific VOCs at very low concentrations in real time, it can give home and business owners a more accurate picture of air quality and any potential health risks.”

The researchers say the same technique could be used to develop sensors to detect other VOCs. In theory, a device the size of a standard household carbon monoxide detector could incorporate multiple different sensors within it, providing real-time information about a range of different hazardous gases.  “At Warwick, we’re developing a low-cost multi-sensor platform that will incorporate these new aerogel materials and, coupled with AI algorithms, detect different VOCs,” said co-author Professor Julian Gardner from Warwick University. 

“By using highly porous materials as the sensing element, we’re opening up whole new ways of detecting hazardous materials in our environment,” said Chen.

The research was supported in part by the Henry Royce Institute, and the Engineering and Physical Sciences Research Council (EPSRC), part of UK Research and Innovation (UKRI). Tawfique Hasan is a Fellow of Churchill College, Cambridge.

Reference:
Zhuo Chen et al. ‘Real-time, noise and drift resilient formaldehyde sensing at room temperature with aerogel filaments.’ Science Advances (2024). DOI: 10.1126/sciadv.adk6856

source: cam.ac.uk



The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Changing Course on Climate

Knowledge & skills for a million Cambridge learners

By Paul Casciato

The global publishing and assessment arm of the University of Cambridge is calling on teachers in 160 countries to help improve climate change education for nearly a million 3-19 year-olds.

The International Education group at Cambridge University Press & Assessment said this week it is advancing work on climate change education by inviting leaders and educators worldwide to collaborate on developing its programmes.

One of the world’s oldest publishing houses said it is working with the University’s climate change initiative, Cambridge Zero, to combine academic expertise from Cambridge with the experience of the educators, policymakers and thought leaders in 10,000 schools around the world.

Education is recognised as a major strategy in tackling climate change because it plays a crucial role in equipping current and future generations with the knowledge and skills needed to address climate-related challenges at local, national, and global levels.

Young learners from Kulachi Hansraj Model School in Delhi during Cambridge Global Perspectives Week

“Education is an essential tool for combating climate change but its potential is still far from being realised,” said Rod Smith, Group Managing Director for International Education at Cambridge University Press & Assessment.

“We want to build a community of educators and leaders to influence the direction of climate change education that will empower current and future generations to respond and be ready for the world.”

In the first instance, education leaders with an active interest in shaping the direction of teaching, learning and assessment of international climate change education have been invited to share their views.

They have been asked to comment on a new introduction paper, complete a questionnaire about their climate change education experience and take part in online discussion sessions hosted by Cambridge.

The new paper, “Ready for the world: empowering learners through climate change education”, explains how Cambridge is working to embed climate change education across the curriculum for 3 -19 year olds in subjects beyond those commonly associated with climate change such as Geography or Science.

This multi-disciplinary approach aims to equip learners both with knowledge about climate change, and with the values, attitudes and skills to understand and address climate change.

“Nearly a million learners in 160 countries will be better equipped to address the challenges of climate change with the knowledge and skills we aim to support in every curriculum in the thousands of schools using Cambridge programmes and resources,” said Cambridge Zero Head of Education and Student Engagement Dr Amy Munro-Faure.

Cambridge’s Global Director for Climate Education, Christine Özden said she has heard from hundreds of students worldwide, who are passionate about making a difference on climate change.

“To achieve its aims, climate change education needs to be high quality, holistic across the curriculum and school ages, and set global issues in a local context.”

To learn more visit: www.cambridgeinternational.org

Published 09 February 2024

The text in this work is licensed under a Creative Commons Attribution 4.0 International License

source: cam.ac.uk

Ancient seafloor vents spewed tiny, life-giving minerals into Earth’s early oceans

The black smoker "Candelabra" in the Logatchev hydrothermal field on the Mid-Atlantic Ridge at a water depth of 3300 m.

source: www.cam.ac.uk

Researchers from the universities of Cambridge and Western Australia have uncovered the importance of hydrothermal vents, similar to underwater geysers, in supplying minerals that may have been a key ingredient in the emergence of early life.

Their study, published in Science Advances, examined 3.5-billion-year-old rocks from western Australia in previously unseen detail and identified large quantities of a mineral called greenalite, which is thought to have played a role in early biological processes. The researchers also found that the seafloor vents would have seeded the oceans with apatite, a mineral rich in the life-essential element phosphorus.

The earliest lifeforms we know of—single-celled microorganisms, or microbes—emerged around 3.7 billion years ago. Most of the rocks that contain traces of them and the environment they lived in have, however, been destroyed. Some of the only evidence we have of this pivotal time comes from an outcrop of sediments in the remote Australian outback.

The so-called Dresser Formation has been studied for years but, in the new study, researchers re-examined the rocks in closer detail, using high magnification electron microscopes to reveal tiny minerals that were essentially hidden in plain sight.

The greenalite particles they observed measured just a few hundred nanometres in size—so small that they would have been washed over thousands of kilometres, potentially finding their way into a range of environments where they may have kick-started otherwise unfavourable chemical reactions, such as those involved in building the first DNA and RNA molecules.

“We’ve found that hydrothermal vents supplied trillions upon trillions of tiny, highly-reactive greenalite particles, as well as large quantities of phosphorus,” said Professor Birger Rasmussen, lead author of the study from the University of Western Australia.

Rasmussen said scientists are still unsure as to the exact role of greenalite in building primitive cells, “but this mineral was in the right place at the right time, and also had the right size and crystal structure to promote the assembly of early cells.”

The rocks the researchers studied contain characteristic layers of rusty-red, iron-rich jasper which formed as mineral-laden seawater spewed from hydrothermal vents. Scientists had thought the jaspers got their distinctive red colour from particles of iron oxide which, just like rust, form when iron is exposed to oxygen.

But how did this iron oxide form when Earth’s early oceans lacked oxygen? One theory is that photosynthesising cyanobacteria in the oceans produced the oxygen, and that it wasn’t until later, around 2.4 billion years ago, that this oxygen started to skyrocket in the atmosphere.

The new results change that assumption, however, “the story is completely different once you look closely enough,” said study co-author Professor Nick Tosca from Cambridge’s Department of Earth Sciences.

The researchers found that tiny, drab, particles of greenalite far outnumbered the iron oxide particles which give the jaspers their colour. The iron oxide was not an original feature, discounting the theory that they were formed by the activity of cyanobacteria.

“Our findings show that iron wasn’t oxidised in the oceans; instead, it combined with silica to form tiny crystals of greenalite,” said Tosca. “That means major oxygen producers, cyanobacteria, may have evolved later, potentially coinciding with the soar in atmospheric oxygen during the Great Oxygenation Event.”

Birger said that more experiments are needed to identify how greenalite might facilitate prebiotic chemistry, “but it was present in such vast quantities that, under the right conditions its surfaces could have synthesized an enormous number of RNA-type sequences, addressing a key question in origin of life research – where did all the RNA come from?” 

Reference:
Rasmussen, B., Muhling, J., Tosca, N.J. ‘Nanoparticulate apatite and greenalite in oldest, well-preserved hydrothermal vent precipitates.’ Science Advances (2024). DOI: 10.1126/sciadv.adj4789



The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Swarming cicadas, stock traders, and the wisdom of the crowd

Adult cicada on a leaf

source: www.cam.ac.uk

The springtime emergence of vast swarms of cicadas can be explained by a mathematical model of collective decision-making with similarities to models describing stock market crashes.

Pick almost any location in the eastern United States – say, Columbus Ohio. Every 13 or 17 years, as the soil warms in springtime, vast swarms of cicadas emerge from their underground burrows singing their deafening song, take flight and mate, producing offspring for the next cycle.

This noisy phenomenon repeats all over the eastern and southeastern US as 17 distinct broods emerge in staggered years. In spring 2024, billions of cicadas are expected as two different broods – one that appears every 13 years and another that appears every 17 years – emerge simultaneously.

Previous research has suggested that cicadas emerge once the soil temperature reaches 18°C, but even within a small geographical area, differences in sun exposure, foliage cover or humidity can lead to variations in temperature.

Now, in a paper published in the journal Physical Review E, researchers from the University of Cambridge have discovered how such synchronous cicada swarms can emerge despite these temperature differences.

The researchers developed a mathematical model for decision-making in an environment with variations in temperature and found that communication between cicada nymphs allows the group to come to a consensus about the local average temperature that then leads to large-scale swarms. The model is closely related to one that has been used to describe ‘avalanches’ in decision-making like those among stock market traders, leading to crashes.

Mathematicians have been captivated by the appearance of 17- and 13-year cycles in various species of cicadas, and have previously developed mathematical models that showed how the appearance of such large prime numbers is a consequence of evolutionary pressures to avoid predation. However, the mechanism by which swarms emerge coherently in a given year has not been understood.

In developing their model, the Cambridge team was inspired by previous research on decision-making that represents each member of a group by a ‘spin’ like that in a magnet, but instead of pointing up or down, the two states represent the decision to ‘remain’ or ‘emerge’.

The local temperature experienced by the cicadas is then like a magnetic field that tends to align the spins and varies slowly from place to place on the scale of hundreds of metres, from sunny hilltops to shaded valleys in a forest. Communication between nearby nymphs is represented by an interaction between the spins that leads to local agreement of neighbours.

The researchers showed that in the presence of such interactions the swarms are large and space-filling, involving every member of the population in a range of local temperature environments, unlike the case without communication in which every nymph is on its own, responding to every subtle variation in microclimate.

The research was carried out Professor Raymond E Goldstein, the Alan Turing Professor of Complex Physical Systems in the Department of Applied Mathematics and Theoretical Physics (DAMTP), Professor Robert L Jack of DAMTP and the Yusuf Hamied Department of Chemistry, and Dr Adriana I Pesci, a Senior Research Associate in DAMTP.

“As an applied mathematician, there is nothing more interesting than finding a model capable of explaining the behaviour of living beings, even in the simplest of cases,” said Pesci.

The researchers say that while their model does not require any particular means of communication between underground nymphs, acoustical signalling is a likely candidate, given the ear-splitting sounds that the swarms make once they emerge from underground.

The researchers hope that their conjecture regarding the role of communication will stimulate field research to test the hypothesis.

“If our conjecture that communication between nymphs plays a role in swarm emergence is confirmed, it would provide a striking example of how Darwinian evolution can act for the benefit of the group, not just the individual,” said Goldstein.

This work was supported in part by the Complex Physical Systems Fund.

Reference:
R E Goldstein, R L Jack, and A I Pesci. ‘How Cicadas Emerge Together: Thermophysical Aspects of their Collective Decision-Making.’ Physical Review E (2024). DOI: 10.1103/PhysRevE.109.L022401



The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Shadow Science and Technology Secretary discusses AI and innovation during Cambridge visit

source: www.cam.ac.uk

Peter Kyle MP, the Shadow Secretary of State for Science, Innovation and Technology, met academics from the University of Cambridge and leaders from the Cambridge community for a day focused on AI policy and innovation.

The visit took place at Cambridge Innovation Capital and was hosted by Innovate Cambridge – an initiative which is bringing together partners across the city region to deliver an inclusive future for Cambridge and its science and technology cluster. The Shadow Minister met with experts on AI from the University and from industry, discussing both the challenges it presents, as well as the enormous potential for AI to serve science, people, and society.

At the opening roundtable, academics including Professor Dame Diane Coyle (Director of the Bennett Institute of Public Policy), Professor Neil Lawrence (DeepMind Professor of Machine Learning), and Professor John Aston (Professor of Statistics in Public Life), provided expert analysis on AI policy challenges as well as the role AI can play in public service reform. The group discussed how governance systems need to evolve for the AI era, and how an increasingly complex information infrastructure can be managed. In addition, they considered the opportunity that AI presents for improving public services and breaking down siloed decision-making within government.

Mr Kyle took part in a series of ‘flash talks’, focused on areas where research in AI is delivering benefits to society. These included work by Dr Ronita Bardhan, from the University’s Department of Architecture, on a new deep-learning model which makes it far easier and cheaper to identify ‘hard-to-decarbonise’ houses and develop strategies to improve their green credentials. Dr Anna Moore presented her work in the Department of Psychiatry, using AI systems to speed up the diagnosis of mental health conditions in children.

In the afternoon, Mr Kyle met with leaders representing civic institutions, academia and business organisations from across the city, including Councillor Mike Davey, Leader of Cambridge City Council, and Andrew Williamson, Managing Partner at Cambridge Innovation Capital. They spoke about their shared vision and strategy for the region to ensure Cambridge remains a globally leading innovation centre, and a collective desire to deliver benefits both locally and across the UK.

The day concluded with a spin-out and business roundtable at which participants discussed the need for government and the private sector to be active in ensuring AI benefits all parts of the UK, and people are re-skilled as jobs change. Mr Kyle was also interested to explore how the UK can become a more attractive place to scale companies. Key considerations included the need to improve access to talent, capital and infrastructure, as well tackling the regulatory barriers which can make the UK less competitive.



The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Religious people coped better with Covid-19 pandemic, research suggests

People in church praying with covid-19 restrictions

source: www.cam.ac.uk

Two Cambridge-led studies suggest that the psychological distress caused by lockdowns (UK) and experience of infection (US) was reduced among those of faith compared to non-religious people.  

People of religious faith may have experienced lower levels of unhappiness and stress than secular people during the UK’s Covid-19 lockdowns in 2020 and 2021, according to a new University of Cambridge study released as a working paper.

The findings follow recently published Cambridge-led research suggesting that worsening mental health after experiencing Covid infection – either personally or in those close to you – was also somewhat ameliorated by religious belief. This study looked at the US population during early 2021.

University of Cambridge economists argue that – taken together – these studies show that religion may act as a bulwark against increased distress and reduced wellbeing during times of crisis, such as a global public health emergency.

“Selection biases make the wellbeing effects of religion difficult to study,” said Prof Shaun Larcom from Cambridge’s Department of Land Economy, and co-author of the latest study. “People may become religious due to family backgrounds, innate traits, or to cope with new or existing struggles.”

“However, the Covid-19 pandemic was an extraordinary event affecting everyone at around the same time, so we could gauge the impact of a negative shock to wellbeing right across society. This provided a unique opportunity to measure whether religion was important for how some people deal with a crisis.”

Larcom and his Cambridge colleagues Prof Sriya Iyer and Dr Po-Wen She analysed survey data collected from 3,884 people in the UK during the first two national lockdowns, and compared it to three waves of data prior to the pandemic.

They found that while lockdowns were associated with a universal uptick in unhappiness, the average increase in feeling miserable was 29% lower for people who described themselves as belonging to a religion.*

The researchers also analysed the data by “religiosity”: the extent of an individual’s commitment to religious beliefs, and how central it is to their life. Those for whom religion makes “some or a great difference” in their lives experienced around half the increase in unhappiness seen in those for whom religion makes little or no difference.**

“The study suggests that it is not just being religious, but the intensity of religiosity that is important when coping with a crisis,” said Larcom.

Those self-identifying as religious in the UK are more likely to have certain characteristics, such as being older and female. The research team “controlled” for these statistically to try and isolate the effects caused by faith alone, and still found that the probability of religious people having an increase in depression was around 20% lower than non-religious people.

There was little overall difference between Christians, Muslims and Hindus – followers of the three biggest religions in the UK. However, the team did find that wellbeing among some religious groups appeared to suffer more than others when places of worship were closed during the first lockdown.

“The denial of weekly communal attendance appears to have been particularly affecting for Catholics and Muslims,” said Larcom.

For the earlier study, authored by Prof Sriya Iyer, along with colleagues Kishen Shastry, Girish Bahal and Anand Shrivastava from Australia and India, researchers used online surveys to investigate Covid-19 infections among respondents or their immediate family and friends, as well as religious beliefs, and mental health. 

The study was conducted during February and March 2021, and involved 5,178 people right across the United States, with findings published in the journal European Economic Review in November 2023.

Researchers found that almost half those who reported a Covid-19 infection either in themselves or their immediate social network experienced an associated reduction in wellbeing.

Where mental health declined, it was around 60% worse on average for the non-religious compared to people of faith with typical levels of “religiosity”.***

Interestingly, the positive effects of religion were not found in areas with strictest lockdowns, suggesting access to places of worship might be even more important in a US context. The study also found significant uptake of online religious services, and a 40% lower association between Covid-19 and mental health for those who used them.****

“Religious beliefs may be used by some as psychological resources that can shore up self-esteem and add coping skills, combined with practices that provide social support,” said Prof Iyer, from Cambridge’s Faculty of Economics.

“The pandemic presented an opportunity to glean further evidence of this in both the United Kingdom and the United States, two nations characterised by enormous religious diversity.” 

Added Larcom: “These studies show a relationship between religion and lower levels of distress during a global crisis. It may be that religious faith builds resilience, and helps people cope with adversity by providing hope, consolation and meaning in tumultuous times.”  


Notes

* The increase in the mean measure for unhappiness was 6.1 percent for people who do not identify with a religion during the lockdown, compared to an increase of 4.3 percent for those who do belong to a religion – a difference of 29%.

**For those that religion makes little or no difference, the increase was 6.3 percent.  For those for whom religion makes some or a great difference, the increase was around half that, at 3 percent and 3.5 percent respectively.

*** This was after controlling for various demographic and environmental traits, including age, race, income, and average mental health rates prior to the pandemic.

**** The interpretation is from Column 1 of Table 5: Determinants of mental health, online access to religion. Where the coefficients of Covid {Not accessed online service} is 2.265 and Covid {Accessed online service} is 1.344. Hence the difference is 2.265-1.344 = 0.921 which is 40% of 2.265.



The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Scientists identify how fasting may protect against inflammation

Intermittent fasting conceptual image, showing a plate of food to represent a clock.

source: www.cam.ac.uk

Cambridge scientists may have discovered a new way in which fasting helps reduce inflammation – a potentially damaging side-effect of the body’s immune system that underlies a number of chronic diseases.

Our work adds to a growing amount of scientific literature that points to the health benefits of calorie restrictionClare Bryant

In research published in Cell Reports, the team describes how fasting raises levels of a chemical in the blood known as arachidonic acid, which inhibits inflammation. The researchers say it may also help explain some of the beneficial effects of drugs such as aspirin.

Scientists have known for some time that our diet – particular a high-calorie Western diet – can increase our risk of diseases including obesity, type 2 diabetes and heart disease, which are linked to chronic inflammation in the body.

Inflammation is our body’s natural response to injury or infection, but this process can be triggered by other mechanisms, including by the so-called ‘inflammasome’, which acts like an alarm within our body’s cells, triggering inflammation to help protect our body when it senses damage. But the inflammasome can trigger inflammation in unintentional ways – one of its functions is to destroy unwanted cells, which can result in the release of the cell’s contents into the body, where they trigger inflammation.

Professor Clare Bryant from the Department of Medicine at the University of Cambridge said: “We’re very interested in trying to understand the causes of chronic inflammation in the context of many human diseases, and in particular the role of the inflammasome.

“What’s become apparent over recent years is that one inflammasome in particular – the NLRP3 inflammasome – is very important in a number of major diseases such as obesity and atherosclerosis, but also in diseases like Alzheimer’s and Parkinson’s disease, many of the diseases of older age people, particularly in the Western world.”

Fasting can help reduce inflammation, but the reason why has not been clear. To help answer this question, a team led by Professor Bryant and colleagues at the University of Cambridge and National Institute for Health in the USA studied blood samples from a group of 21 volunteers, who ate a 500kcal meal then fasted for 24 hours before consuming a second 500kcal meal. 

The team found that restricting calorie intake increased levels of a lipid known as arachidonic acid. Lipids are molecules that play important roles in our bodies, such as storing energy and transmitting information between cells. As soon as individuals ate a meal again, levels of arachidonic acid dropped.

When the researchers studied arachidonic acid’s effect in immune cells cultured in the lab, they found that it turns down the activity of the NLRP3 inflammasome. This surprised the team as arachidonic acid was previously thought to be linked with increased levels of inflammation, not decreased.

Professor Bryant, a Fellow of Queens’ College, Cambridge, added: “This provides a potential explanation for how changing our diet – in particular by fasting – protects us from inflammation, especially the damaging form that underpins many diseases related to a Western high calorie diet.

“It’s too early to say whether fasting protects against diseases like Alzheimer’s and Parkinson’s disease as the effects of arachidonic acid are only short-lived, but our work adds to a growing amount of scientific literature that points to the health benefits of calorie restriction. It suggests that regular fasting over a long period could help reduce the chronic inflammation we associate with these conditions. It’s certainly an attractive idea.”

The findings also hint at one mechanism whereby a high calorie diet might increase the risk of these diseases. Studies have shown that some patients that have a high fat diet have increased levels of inflammasome activity.

“There could be a yin and yang effect going on here, whereby too much of the wrong thing is increasing your inflammasome activity and too little is decreasing it,” said Professor Bryant. “Arachidonic acid could be one way in which this is happening.”

The researchers say the discovery may also offer clues to an unexpected way in which so-called non-steroidal anti-inflammatory drugs such as aspirin work. Normally, arachidonic acid is rapidly broken down in the body, but aspirin stops this process, which can lead to an increase in levels of arachidonic acid, which in turn reduce inflammasome activity and hence inflammation.

Professor Bryant said: “It’s important to stress that aspirin should not be taken to reduce risk of long terms diseases without medical guidance as it can have side-effects such as stomach bleeds if taken over a long period.”

The research was funded by Wellcome, the Medical Research Council and the US National Heart, Lung, and Blood Institute Division of Intramural Research.

Reference
Pereira, M & Liang, J et al. Arachidonic acid inhibition of the NLRP3 inflammasome is a mechanism to explain the anti-inflammatory effects of fasting. Cell Reports; 23 Jan 2024; DOI: 10.1016/j.celrep.2024.113700



The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Robot trained to read braille at twice the speed of humans

Can robots read braille?

https://www.youtube-nocookie.com/embed/xqtA2Z668Ic?wmode=opaque&controls=1&rel=0&autohide=0&enablejsapi=1&origin=https%3A%2F%2Fwww.cam.ac.uk

source: www.cam.ac.uk

Researchers have developed a robotic sensor that incorporates artificial intelligence techniques to read braille at speeds roughly double that of most human readers.

The research team, from the University of Cambridge, used machine learning algorithms to teach a robotic sensor to quickly slide over lines of braille text. The robot was able to read the braille at 315 words per minute at close to 90% accuracy.

Although the robot braille reader was not developed as an assistive technology, the researchers say the high sensitivity required to read braille makes it an ideal test in the development of robot hands or prosthetics with comparable sensitivity to human fingertips. The results are reported in the journal IEEE Robotics and Automation Letters.

Human fingertips are remarkably sensitive and help us gather information about the world around us. Our fingertips can detect tiny changes in the texture of a material or help us know how much force to use when grasping an object: for example, picking up an egg without breaking it or a bowling ball without dropping it.

Reproducing that level of sensitivity in a robotic hand, in an energy-efficient way, is a big engineering challenge. In Professor Fumiya Iida’s lab in Cambridge’s Department of Engineering, researchers are developing solutions to this and other skills that humans find easy, but robots find difficult.

“The softness of human fingertips is one of the reasons we’re able to grip things with the right amount of pressure,” said Parth Potdar from Cambridge’s Department of Engineering and an undergraduate at Pembroke College, the paper’s first author. “For robotics, softness is a useful characteristic, but you also need lots of sensor information, and it’s tricky to have both at once, especially when dealing with flexible or deformable surfaces.”

Braille is an ideal test for a robot ‘fingertip’ as reading it requires high sensitivity, since the dots in each representative letter pattern are so close together. The researchers used an off-the-shelf sensor to develop a robotic braille reader that more accurately replicates human reading behaviour.

“There are existing robotic braille readers, but they only read one letter at a time, which is not how humans read,” said co-author David Hardman, also from the Department of Engineering. “Existing robotic braille readers work in a static way: they touch one letter pattern, read it, pull up from the surface, move over, lower onto the next letter pattern, and so on. We want something that’s more realistic and far more efficient.”

The robotic sensor the researchers used has a camera in its ‘fingertip’, and reads by using a combination of the information from the camera and the sensors. “This is a hard problem for roboticists as there’s a lot of image processing that needs to be done to remove motion blur, which is time and energy-consuming,” said Potdar.

The team developed machine learning algorithms so the robotic reader would be able to ‘deblur’ the images before the sensor attempted to recognise the letters. They trained the algorithm on a set of sharp images of braille with fake blur applied. After the algorithm had learned to deblur the letters, they used a computer vision model to detect and classify each character.

Once the algorithms were incorporated, the researchers tested their reader by sliding it quickly along rows of braille characters. The robotic braille reader could read at 315 words per minute at 87% accuracy, which is twice as fast and about as accurate as a human Braille reader.

“Considering that we used fake blur the train the algorithm, it was surprising how accurate it was at reading braille,” said Hardman. “We found a nice trade-off between speed and accuracy, which is also the case with human readers.”

“Braille reading speed is a great way to measure the dynamic performance of tactile sensing systems, so our findings could be applicable beyond braille, for applications like detecting surface textures or slippage in robotic manipulation,” said Potdar.

In future, the researchers are hoping to scale the technology to the size of a humanoid hand or skin. The research was supported in part by the Samsung Global Research Outreach Program.

Reference:
Parth Potdar et al. ‘High-Speed Tactile Braille Reading via Biomimetic Sliding Interactions.’ IEEE Robotics and Automation Letters (2024). DOI: 10.1109/LRA.2024.3356978



The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Cambridge student Giulio Regeni remembered

Elisabeth Kendall, Mistress of Girton College, unveils the plaque honouring Giulio Regeni.

source: www.cam.ac.uk

Giulio Regeni was remembered during an event at Girton College, where a plaque was unveiled in his honour.

Giulio was a passionate researcher with a deep sense of justice.Elisabeth Kendall, Mistress of Girton College

The plaque offers a space in which colleagues and friends of the Cambridge PhD student, who studied at Girton, can pay their respects.

Giulio, an experienced researcher, was conducting fieldwork when he was abducted from the streets of Cairo on 25 January 2016, and later found murdered on 3 February 2016. The plaque unveiling marks the 8-year anniversary of his death. No one has yet been convicted of the crime.

Court officials in Rome have charged four Egyptian security officials with Giulio’s abduction, torture and murder, and a trial is due to begin in February. The College and University continue to stand in support of Giulio’s family and friends, and with Amnesty International, in their tireless efforts to uncover the truth of what happened to Giulio.

Elisabeth Kendall, Mistress of Girton College, said: “The loss of Giulio continues to cast a dark shadow over all those who knew him. Giulio was a passionate researcher with a deep sense of justice who had his whole life ahead of him before it was cruelly ended in Cairo. Justice has yet to be done. We will never stop remembering Giulio.”

Every year the College marks the anniversary by flying the College flag to half-mast in memory on 25 January and then on 3 February.



The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.